Skip to main content

Hive Complex Data Types


  • Array
$ vi arrayfile
1,abc,40000,a$b$c,hyd
2,def,3000,d$f,bang
3,abc,40000,a$b$c,hyd
4,def,3000,d$f,bang
5,abc,40000,a$b$c,hyd
6,def,3000,d$f,bang
7,abc,40000,a$b$c,hyd
8,def,3000,d$f,bang
9,abc,40000,a$b$c,hyd
10,def,3000,d$f$d$e$d$e$e$r$g,bang
hive> create table array_tab (id int, name string, salary bigint, sub array<string>, city string)
    > row format delimited
    > fields terminated by ','
    > collection items terminated by '$';
hive> load data local inpath '/root/arrayfile' into table array_tab;
hive> select * from array_tab;
OK
1       abc     40000   ["a","b","c"]   hyd
2       def     3000    ["d","f"]       bang
3       abc     40000   ["a","b","c"]   hyd
4       def     3000    ["d","f"]       bang
5       abc     40000   ["a","b","c"]   hyd
6       def     3000    ["d","f"]       bang
7       abc     40000   ["a","b","c"]   hyd
8       def     3000    ["d","f"]       bang
9       abc     40000   ["a","b","c"]   hyd
10      def     3000    ["d","f","d","e","d","e","e","r","g"]   bang
hive> describe array_tab;
OK
id                      int
name                    string
salary                  bigint
sub                     array<string>
city                    string
Time taken: 0.79 seconds, Fetched: 5 row(s)
hive> select sub[0] from array_tab where id=1;
….
OK
a



  • Map

$  vi mapfile
1,abc,40000,a$b$c,pf#500$epf#200,hyd
2,def,3000,d$f,pf#500,bang
2,abc,40000,a$b$c,pf#500$epf#200,hyd
3,def,3000,d$f,pf#500,bang
4,abc,40000,a$b$c,pf#500$epf#200,hyd
5,def,3000,d$f,pf#500,bang
6,abc,40000,a$b$c,pf#500$epf#200,hyd
7,def,3000,d$f,pf#500,bang
8,abc,40000,a$b$c,pf#500$epf#200,hyd
hive> create table arr_map_tab (id int, name string, salary bigint, sub array<string>, details map<string, int>, city string)
    > row format delimited
    > fields terminated by ','
    > collection items terminated by '$'
    > map keys terminated by '#';
hive> load data local inpath 'mapfile' into table arr_map_tab;
hive> select * from arr_map_tab;
OK
1       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
2       def     3000    ["d","f"]       {"pf":500}      bang
2       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
3       def     3000    ["d","f"]       {"pf":500}      bang
4       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
5       def     3000    ["d","f"]       {"pf":500}      bang
6       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
7       def     3000    ["d","f"]       {"pf":500}      bang
8       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
Time taken: 2.04 seconds, Fetched: 9 row(s)
hive> describe arr_map_tab;
OK
id                      int
name                    string
salary                  bigint
sub                     array<string>
details                 map<string,int>
city                    string
Time taken: 0.838 seconds, Fetched: 6 row(s)
hive> select details["pf"] from arr_map_tab limit 1;
OK
500
Time taken: 33.805 seconds, Fetched: 1 row(s)


  • Struct

$  vi structfile
1,abc,40000,a$b$c,pf#500$epf#200,hyd$ap$500001
2,def,3000,d$f,pf#500,bang$kar$600038
4,abc,40000,a$b$c,pf#500$epf#200,bhopal$MP$452013
5,def,3000,d$f,pf#500,Indore$MP$452014

hive> create table arr_map_struct_tab (id int, name string, salary bigint, sub array<string>, details map<string, int>, address struct<city:string, state:string, pin:int>)
> row format delimited                                                                                                                                                  
> fields terminated by ','
> collection items terminated by '$'                                                                                                         > map keys terminated by #';
OK
Time taken: 4.982 seconds
hive> describe arr_map_struct_tab;
OK
id                      int
name                    string
salary                  bigint
sub                     array<string>
details                 map<string,int>
address                 struct<city:string,state:string,pin:int>
Time taken: 1.416 seconds, Fetched: 6 row(s)
hive> load data local inpath 'structfile' into table arr_map_struct_tab;
hive> select * from arr_map_struct_tab;
OK
1       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    {"city":"hyd","state":"ap","pin":500001}
2       def     3000    ["d","f"]       {"pf":500}      {"city":"bang","state":"kar","pin":600038}
4       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    {"city":"bhopal","state":"MP","pin":452013}
5       def     3000    ["d","f"]       {"pf":500}      {"city":"Indore","state":"MP","pin":452014}
Time taken: 1.226 seconds, Fetched: 4 row(s)
hive> select address.city from arr_map_struct_tab where details["pf"]="500" and sub[0]="a";
OK
hyd
bhopal
Time taken: 20.286 seconds, Fetched: 2 row(s)



  • Uniontype
hive> CREATE TABLE union_tab(col1 UNIONTYPE<INT, DOUBLE, STRING, ARRAY<string>, STRUCT<a:INT,b:string>>)
    > row format delimited
    > fields terminated by ','
    > COLLECTION ITEMS TERMINATED BY '|'
    > LINES TERMINATED BY '\n';
OK
Time taken: 2.356 seconds
$ vi unionfile
0|1
0|12
1|1.234
1|2.3456
2|dinesh
2|Dinesh Sachdev
hive> load data local inpath 'unionfile' overwrite into table union_tab;
hive> select * from union_tab;
OK
{0:1}
{0:12}
{1:1.234}
{1:2.3456}
{2:"dinesh"}
{2:"Dinesh Sachdev"}
Time taken: 1.211 seconds, Fetched: 6 row(s)
It becomes quiet simple to load data into uniontype for primitives. But what about complex types? For example if we edit ‘unionfile’ and append an array:
$vi unionfile
0|1
0|12
1|1.234
1|2.3456
2|dinesh
2|Dinesh Sachdev
3|din|esh|sach|dev
hive> load data local inpath 'unionfile' overwrite into table union_tab;
hive> select * from union_tab;
OK
{0:1}
{0:12}
{1:1.234}
{1:2.3456}
{2:"dinesh"}
{2:"Dinesh Sachdev"}
{3:["din|esh|sach|dev"]}
Time taken: 1.11 seconds, Fetched: 7 row(s)

There is only a single element in array whereas we expected to have array of 4 strings [“din”,”esh”,”sach”,”dev”]

For this we can use create_union UDF:

hive> insert into table union_tab
    > select create_union(4,1, 1.02,"d", array("d","f"), named_struct('a',1, 'b','dinesh')) from sample_07 limit 1;
...
...
hive> insert into table union_tab
    > select create_union(3,1, 1.02,"d", array("d","f"), named_struct('a',1, 'b','dinesh')) from sample_07 limit 1;
hive> select * from union_tab;
OK
{4:{"a":1,"b":"dinesh"}}
{3:["d","f"]}
{0:1}
{0:12}
{1:1.234}
{1:2.3456}
{2:"dinesh"}
{2:"Dinesh Sachdev"}
{3:["din|esh|sach|dev"]}
Time taken: 0.064 seconds, Fetched: 9 row(s)


Comments

  1. boss, how can I query an union? suppose say I want to say "select from union_tab where "

    ReplyDelete

Post a Comment

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...




Hive Count Query not working

Hive with Tez execution engine -  count(*) not working , returning 0 results.  Solution -  set hive.compute.query.using.stats=false Refer -  https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties hive.compute.query.using.stats Default Value:  false Added In: Hive 0.13.0 with  HIVE-5483 When set to true Hive will answer a few queries like min, max, and count(1) purely using statistics stored in the metastore. For basic statistics collection, set the configuration property  hive.stats.autogather   to true. For more advanced statistics collection, run ANALYZE TABLE queries.