Skip to main content

Hive UDF Examples

There are 2 ways to write UDF's in Hive by extending:

  • org.apache.hadoop.hive.ql.exec.UDF
  • org.apache.hadoop.hive.ql.udf.generic.GenericUDF


First example below is simple one which can be used with hadoop primitive types.
Second example is bit complex as this can used with complex types arrays, maps etc. 


package hive;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class SimpleUDFExample extends UDF {

       public Text evaluate(Text input) {
              if(input ==null)
                     return null;
              return new Text("Hello "+input.toString());
       }

}

package hive;

import java.util.List;

import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ListObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector;
import org.apache.hadoop.io.Text;

public class ComplexUDFExample extends GenericUDF {

       ListObjectInspector listOI;
       StringObjectInspector elementOI;
      

       @Override
       public Object evaluate(DeferredObject[] arguments) throws HiveException {
              // get the list and string from the deferred objects using the object inspectors
           List<Text> list = (List<Text>) this.listOI.getList(arguments[0].get());
           String arg = elementOI.getPrimitiveJavaObject(arguments[1].get());
          
           // check for nulls
           if (list == null || arg == null) {
             return null;
           }
          
        // see if our list contains the value we need
           for(Text s: list) {
               if (arg.equals(s.toString())) return new Boolean(true);
             }
          
           return new Boolean(false);
       }

       @Override
       public String getDisplayString(String[] arg0) {
              return "arrayContainsExample()";
       }

       @Override
       public ObjectInspector initialize(ObjectInspector[] arguments)
                     throws UDFArgumentException {
              if (arguments.length != 2) {
                     throw new UDFArgumentLengthException(
                                  "arrayContainsExample only takes 2 arguments: List<T>, T");
              }

              ObjectInspector a = arguments[0];
              ObjectInspector b = arguments[1];

              if (!(a instanceof ListObjectInspector)
                           || !(b instanceof StringObjectInspector)) {
                     throw new UDFArgumentException(
                                  "first argument must be a list / array, second argument must be a string");
              }
             
              this.listOI = (ListObjectInspector) a;
           this.elementOI = (StringObjectInspector) b;
          
           if(!(listOI.getListElementObjectInspector() instanceof StringObjectInspector)){
              throw new UDFArgumentException("first argument must be a list of strings");
           }
          
           // the return type of our function is a boolean, so we provide the correct object inspector
           return PrimitiveObjectInspectorFactory.javaBooleanObjectInspector;
       }

}



Compile above code and register the jar file and use the UDF's as below:

hive> add jar
hive> /root/hadoop-examples.jar;
hive> create temporary function helloworld as 'hive.SimpleUDFExample';
hive> create temporary function containsString as 'hive.ComplexUDFExample';
hive> select helloworld(salary) from sample_07;
….
hive> select containsString(a.col1, a.col2) from ( select array("a", "b", "c") as col1 , "q" as col2  from sample_07 limit 1 ) a;
…..
…….




Comments

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...




Hive Count Query not working

Hive with Tez execution engine -  count(*) not working , returning 0 results.  Solution -  set hive.compute.query.using.stats=false Refer -  https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties hive.compute.query.using.stats Default Value:  false Added In: Hive 0.13.0 with  HIVE-5483 When set to true Hive will answer a few queries like min, max, and count(1) purely using statistics stored in the metastore. For basic statistics collection, set the configuration property  hive.stats.autogather   to true. For more advanced statistics collection, run ANALYZE TABLE queries.