Skip to main content

Hive: Write custom serde

Suppose we have input file like below:
$ vi uwserde
kiju1233,1234567890
huhuhuhu,1233330987
This input file consist of sessionid and timestamp as comma-separated value. Assuming this I wrote a WritableComparable as below:

package hive;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;

public class UserWritable implements WritableComparable<UserWritable>  {
      
       private Text sessionID;
      
      
       private Text timestamp;


       public UserWritable() {
              set(new Text(), new Text());
       }
      
      
       public void set(Text sessionID, Text timestamp) {
              this.sessionID = sessionID;
              this.timestamp = timestamp;
       }

      
       public Text getSessionID() {
              return sessionID;
       }
      
      
       public Text getTimestamp() {
              return timestamp;
       }
      
      
       @Override
       public void readFields(DataInput din) throws IOException {
              sessionID.readFields(din);
              timestamp.readFields(din);
       }

       @Override
       public void write(DataOutput dout) throws IOException {
              sessionID.write(dout);
              timestamp.write(dout);
       }

      
       @Override
       public int hashCode() {
              return sessionID.hashCode()*163 + timestamp.hashCode();
       }
      
       @Override
       public int compareTo(UserWritable uw) {
              int cmp = compare(sessionID,uw.sessionID); //sessionID.compareTo(uw.sessionID);
             
              if(cmp != 0){
                     return cmp;
              }
             
              try{
                     long meT = Long.parseLong(timestamp.toString());
                     long cmpT = Long.parseLong(uw.timestamp.toString());
                     return compare(new LongWritable(meT),new LongWritable(cmpT));//new LongWritable(meT).compareTo(new LongWritable(cmpT));
              }catch(Exception e){
                     e.printStackTrace();
                     throw new RuntimeException("Error in comparing long timestamp.",e);
              }
             
       }
      

       public static int compare(Text a , Text b){
              return a.compareTo(b);
       }
      
       public static int compare(LongWritable a , LongWritable b){
              return a.compareTo(b);
       }
      
       @Override
       public boolean equals(Object o) {
              if (o instanceof UserWritable) {
                     UserWritable tp = (UserWritable) o;
                     return sessionID.equals(tp.sessionID) && timestamp.equals(tp.timestamp);
              }
              return false;
       }
}


Now let us write InputFormat class with LongWritable key and UserWritable as value. Also, implement RecordReader to read file line by line.

package hive;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.Seekable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.JobConfigurable;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;

public class UWInputFormat extends FileInputFormat<LongWritable, UserWritable> implements JobConfigurable{

       JobConf conf;
      
       @Override
       public void configure(JobConf conf) {
              this.conf = conf;         
       }
      
       @Override
       public org.apache.hadoop.mapred.RecordReader<LongWritable, UserWritable> getRecordReader(
                     org.apache.hadoop.mapred.InputSplit paramInputSplit,
                     JobConf paramJobConf, Reporter paramReporter) throws IOException {
              paramReporter.setStatus(paramInputSplit.toString());
              return new UWRecordReader(paramJobConf, (FileSplit) paramInputSplit);
       }

      
        public static class UWRecordReader implements RecordReader<LongWritable,UserWritable> {
             
              private FileSplit fileSplit;
              private Configuration conf;
              private boolean processed =false;
              private FSDataInputStream fileIn;
              private long pos;
             
             
             
             
              public UWRecordReader(Configuration job,
                   FileSplit split) throws IOException {
                     this.fileSplit =  split;
                     this.conf  = job;
                     Path file = fileSplit.getPath();

                     FileSystem fs = file.getFileSystem(conf);
                     this.fileIn = fs.open(file);
              }

             
              @Override
              public LongWritable createKey() {
                    
                     return new LongWritable();
              }
             
              @Override
              public UserWritable createValue() {
                     // TODO Auto-generated method stub
                     return new UserWritable();
              }
             
              @Override
              public long getPos() throws IOException {
                     return pos;
              }
             
              @Override
              public float getProgress() throws IOException {
                     return processed ? 1.0f : 0.0f;
              }
             
              @Override
              public boolean next(LongWritable paramK, UserWritable paramV)
                           throws IOException {
                     if(!processed){
                           pos = fileIn.getPos();
                           paramK.set(pos);
                          
                           String val = fileIn.readLine();
                          
                           if(val==null || val.trim().equals("")){
                                  processed = true;
                                  return false;
                           }
                          
                           String [] arr = val.split(",");
                           paramV.set(new Text(arr[0]), new Text(arr[1]));
                           return true;
                     }
                     return false;
              }


              @Override
              public void close() throws IOException {
                     fileIn.close();                  
              }

Now let us write Serializer-Deserializer. In below example I have only covered deserialize option which will get UserWritable object for each line read by RecordReader. 

package hive;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat;
import org.apache.hadoop.hive.serde.Constants;
import org.apache.hadoop.hive.serde2.SerDe;
import org.apache.hadoop.hive.serde2.SerDeException;
import org.apache.hadoop.hive.serde2.SerDeStats;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;

public class UWSerde implements SerDe{

       private int numColumns;
       private List<String> columnNames;
       private ArrayList<Object> row;
       private StructObjectInspector rowOI;
       private List<TypeInfo> columnTypes;
      
       @Override
       public Object deserialize(Writable arg0) throws SerDeException {
              UserWritable rowKey = (UserWritable) arg0;
              // Loop over columns in table and set values
              String colName;
              Object value;
             
              for (int c = 0; c < numColumns; c++) {
                     colName = columnNames.get(c);
                     TypeInfo ti = columnTypes.get(c);
                     if(colName.contains("session"))
                           row.set(c, rowKey.getSessionID().toString());
                     else
                           row.set(c, rowKey.getTimestamp().toString());
              }
              return row;
       }

       @Override
       public ObjectInspector getObjectInspector() throws SerDeException {
              return rowOI;
       }

       @Override
       public SerDeStats getSerDeStats() {
              // TODO Auto-generated method stub
              return null;
       }

       @Override
       public void initialize(Configuration sysProps, Properties tblProps)
                     throws SerDeException {
              String columnNameProperty = tblProps.getProperty(Constants.LIST_COLUMNS);
              columnNames = Arrays.asList(columnNameProperty.split(","));
             
              String columnTypeProperty = tblProps.getProperty(Constants.LIST_COLUMN_TYPES);
              columnTypes = TypeInfoUtils.getTypeInfosFromTypeString(columnTypeProperty);
             
              assert columnNames.size() == columnTypes.size();
              numColumns = columnNames.size();
             
              List<ObjectInspector> columnOIs = new ArrayList<ObjectInspector>(
                           columnNames.size());
              ObjectInspector oi;
             
              for (int c = 0; c < numColumns; c++) {
                     oi = TypeInfoUtils.getStandardJavaObjectInspectorFromTypeInfo(columnTypes.get(c));
                     columnOIs.add(oi);
              }
              rowOI = ObjectInspectorFactory.getStandardStructObjectInspector(columnNames, columnOIs);
              // Create an empty row object to be reused during deserialization
              row = new ArrayList<Object>(numColumns);
              for (int c = 0; c < numColumns; c++) {
                     row.add(null);
              }
             
       }

       @Override
       public Class<? extends Writable> getSerializedClass() {
              return Text.class;
       }

       @Override
       public Writable serialize(Object arg0, ObjectInspector arg1)
                     throws SerDeException {
              // TODO Auto-generated method stub
              return null;
       }

      
}


Create Jar of above code named as "hadoop-examples.jar" and open hive cli.

hive> add jar /root/hadoop-examples.jar;

hive> create table uw(
    > sessionid string,
    > timestamp string )
    > ROW FORMAT SERDE 'hive.UWSerde'
    > stored as
    > inputformat 'hive.UWInputFormat'
    > outputformat 'org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat'
    > ;
OK
Time taken: 9.5 seconds

hive> load data local inpath '/root/uwserde' into table uw;
Copying data from file:/root/uwserde
Copying file: file:/root/uwserde
Loading data to table default.uw
Table default.uw stats: [numFiles=1, numRows=0, totalSize=40, rawDataSize=0]
OK
Time taken: 6.565 seconds

hive> select * from uw;
OK
kiju1233        1234567890
huhuhuhu        1233330987
Time taken: 2.689 seconds, Fetched: 2 row(s)


Comments

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...




Hive Count Query not working

Hive with Tez execution engine -  count(*) not working , returning 0 results.  Solution -  set hive.compute.query.using.stats=false Refer -  https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties hive.compute.query.using.stats Default Value:  false Added In: Hive 0.13.0 with  HIVE-5483 When set to true Hive will answer a few queries like min, max, and count(1) purely using statistics stored in the metastore. For basic statistics collection, set the configuration property  hive.stats.autogather   to true. For more advanced statistics collection, run ANALYZE TABLE queries.