Skip to main content

Apache Kafka


Install Kafka:

  • Download tar file.
  • Extract it at location say /usr/local/kafka_2.11-0.8.2.2
  • Set variables in .bashrc

###Kafka
export KAFKA_HOME=/usr/local/kafka_2.11-0.8.2.2
export PATH=$PATH:$KAFKA_HOME/bin
###

With Kafka, we can create multiple types of clusters, such as the following:
  •  A single node—single broker cluster
  • A single node—multiple broker cluster
  • Multiple nodes—multiple broker clusters

A single node – a single broker cluster
·         
      Starting the ZooKeeper server:
>bin/zookeeper-server-start.sh config/zookeeper.properties

·         Starting the Kafka broker:
>bin/kafka-server-start.sh config/server.properties

·         Creating a Kafka topic:
>kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic kafkatopic

·         Get list of topics:
>kafka-topics.sh --list --zookeeper localhost:2181

·         Start console-based producer
>kafka-console-producer.sh --broker-list localhost:9092 --topic kafkatopic

type:
Welcome to Kafka DS
This is single node single broker cluster
Just started !! Jai Ganesh

·         Start command line consumer client
>kafka-console-consumer.sh --zookeeper localhost:2181 --topic kafkatopic --from-beginning

Output:
Welcome to Kafka DS
This is single node single broker cluster
Just started !! Jai Ganesh


A single node – multiple broker clusters
·         Starting the ZooKeeper server:
>bin/zookeeper-server-start.sh config/zookeeper.properties

·         Starting the Kafka broker:
For setting up multiple brokers on a single node, different server property files are required for each broker. Each property file will define unique, different values for the following properties: broker.id, port, log.dir

>bin/kafka-server-start.sh config/server-1.properties
>bin/kafka-server-start.sh config/server-2.properties

·         Creating a Kafka topic using the command line
>kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 2 --partitions 4 --topic replicated-kafkatopic

Note: - Replication factor should be in accordance with number of brokers. Else can cause below exception:
kafka.admin.AdminOperationException: replication factor: 3 larger than available brokers: 2
        at kafka.admin.AdminUtils$.assignReplicasToBrokers(AdminUtils.scala:70)
        at kafka.admin.AdminUtils$.createTopic(AdminUtils.scala:171)
        at kafka.admin.TopicCommand$.createTopic(TopicCommand.scala:93)
        at kafka.admin.TopicCommand$.main(TopicCommand.scala:55)
        at kafka.admin.TopicCommand.main(TopicCommand.scala)

·         Starting a producer to send messages
>kafka-console-producer.sh --broker-list localhost:9093, localhost:9094 --topic replicated-kafkatopic

If we have a requirement to run multiple producers connecting to different combinations of brokers, we need to specify the broker list for each producer as we did in the case of multiple brokers.

·         Starting a consumer to consume messages
>kafka-console-consumer.sh --zookeeper localhost:2181 --from-beginning --topic replicated-kafkatopic

Multiple node- multiple broker cluster

We should install Kafka on each node of the cluster, and all the brokers from the different nodes need to connect to the same ZooKeeper. Then follow the same step on every machine to start broker as followed above to start multiple broker on single machine.

Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),&




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.datasource




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Caused by: java.lang.UnsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainIntegerDictionary

Exception -  Caused by: java.lang.UnsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainIntegerDictionary at org.apache.parquet.column.Dictionary.decodeToBinary(Dictionary.java:44) at org.apache.spark.sql.execution.vectorized.ColumnVector.getUTF8String(ColumnVector.java:645) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) Analysis - This might occur because of data type mismatch between Hive Table & written Parquet file. Solution - Correct the data type to match between Hive Table & Parquet