Skip to main content

Apache Kafka: Sample Producer

For writing producer we need following classes:

  • class Producer<K, V>
  • class KeyedMessage[K, V](val topic: String, val key: K, val message: V)
  • class ProducerConfig

Major properties:
  •          metadata.broker.list :- Producers automatically determine the lead broker for the topic, partition it by raising a request for the metadata, and connect to the correct broker before it publishes any message.
  •          serializer.class :- serializer class that needs to be used while preparing the message for transmission from the producer to the broker. By default, the serializer class for the key and message is the same. Producer configuration key.serializer.class is used to set the custom encoder.
  •          request.required.acks :- The value 1 means the producer receives an acknowledgment once the lead replica has received the data. By default, the producer works in the “fire and forget” mode and is not informed in the case of message loss.
     Sample Code:
     
       package ds.kafka;

       import java.util.Date;
       import java.util.Properties;


      //import
       import kafka.javaapi.producer.Producer;
       import kafka.producer.KeyedMessage;
       import kafka.producer.ProducerConfig;

       public class SimpleProducer {

                        /**
                         * @param args
                         * @throws InterruptedException
                         * @throws NumberFormatException
                         */
                        public static void main(String[] args) throws NumberFormatException, InterruptedException {
                                                int argsCount = args.length;
                                               
                                                if (argsCount != 2)
                                                                        throw new IllegalArgumentException("Please provide topic name and Message count as arguments");
                                               
                                                //define properties
                                                Properties properties = new Properties();
                                                properties.put("metadata.broker.list", "192.168.56.101:9092, 192.168.56.101:9093, 192.168.56.101:9094");
                                                properties.put("serializer.class","kafka.serializer.StringEncoder");
                                                properties.put("request.required.acks", "1");
                                               
                                                ProducerConfig config = new ProducerConfig(properties);
                                               
                                                Producer<String, String> producer = new Producer<String, String>(config);
                                                try{
                                                                        buildMessage(args[0], producer, Integer.parseInt(args[1]));
                                                }
                                                finally{
                                                                        //close producer pool connection to all
                                                                        //kafka brokers. Also, closes zookeeper
                                                                        //client connection if any
                                                                        producer.close();
                                                }
                        }
                       
                        private static void  buildMessage(String topic, Producer<String, String> producer, int msgCount) throws InterruptedException {
                                                for(int i =0; i<msgCount; i++){
                                                String runtime = new Date().toString();
                                                String msg = "Message Publishing Time - " + runtime;
                                                //String.format("Dinesh%d", i);
                                                KeyedMessage<String, String> data = new KeyedMessage<String, String>(topicmsg);
                                                producer.send(data);
                                                Thread.sleep(2000);
                                                }
                        }

}









Comments

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...




Hive Count Query not working

Hive with Tez execution engine -  count(*) not working , returning 0 results.  Solution -  set hive.compute.query.using.stats=false Refer -  https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties hive.compute.query.using.stats Default Value:  false Added In: Hive 0.13.0 with  HIVE-5483 When set to true Hive will answer a few queries like min, max, and count(1) purely using statistics stored in the metastore. For basic statistics collection, set the configuration property  hive.stats.autogather   to true. For more advanced statistics collection, run ANALYZE TABLE queries.