Skip to main content

Apache Kafka: Low Level api Consumer

If you want greater control over partition consumption then High Level api consumer you may implement it in low level api. It will require to do more work that is not required in consumer group, like:

  • Keeping track of offset where consumer left consumption.
  • Identify lead Broker and adjust with Broker leader changes.
Steps for implementing :

  • Find an active Broker and find out which Broker is the leader for your topic and partition
  • Determine who the replica Brokers are for your topic and partition
  • Build the request defining what data you are interested in
  • Fetch the data
  • Identify and recover from leader changes
package learning.kafka;

import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.cluster.Broker;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.FetchResponse;
import kafka.javaapi.OffsetRequest;
import kafka.javaapi.OffsetResponse;
import kafka.javaapi.PartitionMetadata;
import kafka.javaapi.TopicMetadata;
import kafka.javaapi.TopicMetadataRequest;
import kafka.javaapi.TopicMetadataResponse;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;

public class SimpleExample {

       public static void main(String[] args) {
              SimpleExample example = new SimpleExample();

              // max messages to read
              long maxReads = Long.parseLong(args[0]);

              String topic = args[1];
              int partition = Integer.parseInt(args[2]);

              List<String> seeds = new ArrayList<String>();
              // broker to detrmine lead
              seeds.add(args[3]);

              // port
              int port = Integer.parseInt(args[4]);

              try {
                     example.run(maxReads, topic, partition, seeds, port);
              } catch (Exception e) {
                     System.out.println("Oops:" + e);
                     e.printStackTrace();
              }
       }
      
      
       public void run(long maxReads, String topic, int partition, List<String> seeds, int port) throws Exception {
              PartitionMetadata metadata = findLeader(seeds, port, topic, partition);
             
              if (metadata == null) {
                   System.err.println("Can't find metadata for Topic and Partition. Exiting");
                   return;
            }
             
              if(metadata.leader() ==null){
                       System.err.println("Can't find Leader for Topic and Partition. Exiting");
                 return;
              }
             
              String leadBroker = metadata.leader().host();
              String clientName = "Client_" + topic + "_" + partition;
             
              SimpleConsumer consumer = new SimpleConsumer(leadBroker, port, 100000, 64 * 1024, clientName);
              long readoffset = getLastOffset(consumer, topic, partition, kafka.api.OffsetRequest.EarliestTime(), clientName);
             
              int numErrors = 0;
             
              while(maxReads > 0){
                     if (consumer == null) {
                consumer = new SimpleConsumer(leadBroker, port, 100000, 64 * 1024, clientName);
            }
                    
                     kafka.api.FetchRequest req = new FetchRequestBuilder().clientId(clientName)
                                  .addFetch(topic, partition, readoffset, 100000)
                                  .build();
                    
                     FetchResponse fetchResponse = consumer.fetch(req);
                    
                     if (fetchResponse.hasError()) {
                            numErrors++;
                           // Something went wrong!
                            short code = fetchResponse.errorCode(topic, partition);
                            System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
                            if (numErrors > 5) break;
                            if (code == ErrorMapping.OffsetOutOfRangeCode())  {
                                  // We asked for an invalid offset. For simple case ask for the last element to reset
                                   readoffset = getLastOffset(consumer,topic, partition, kafka.api.OffsetRequest.LatestTime(), clientName);
                        continue;
                            }
                            consumer.close();
                    consumer = null;
                    leadBroker = findNewLeader(leadBroker, topic, partition, port);
                    continue;
                     }
                     numErrors = 0;
                     long numRead = 0;
                    
                     for(MessageAndOffset messageAndOffset : fetchResponse.messageSet(topic, partition)){
                           long currentOffset = messageAndOffset.offset();
                           // Safety check: It may be case we get old messages so just discard them (like in case of compression)
                           if(currentOffset< readoffset){
                                  System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readoffset);
                    continue;
                           }
                           readoffset = messageAndOffset.nextOffset();
                           ByteBuffer payload = messageAndOffset.message().payload();
                          
                           byte[] bytes = new byte[payload.limit()];
                           payload.get(bytes);
                            System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
                numRead++;
                maxReads--;
                     }
                    
                     if (numRead == 0) {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException ie) {
                }
            }
                    
                    
              }
              if (consumer != null) consumer.close();
       }


       private List<String> m_replicaBrokers = new ArrayList<String>();

       private PartitionMetadata findLeader(List<String> a_seedBrokers,
                     int a_port, String a_topic, int a_partition) {

              PartitionMetadata returnMetaData = null;

              loop: for (String seed : a_seedBrokers) {
                     SimpleConsumer consumer = null;
                     try {
                           consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024,
                                         "leaderLookup");

                           List<String> topics = Collections.singletonList(a_topic);
                           TopicMetadataRequest req = new TopicMetadataRequest(topics);
                           TopicMetadataResponse resp = consumer.send(req);
                           List<TopicMetadata> metaData = resp.topicsMetadata();

                           for (TopicMetadata item : metaData) {
                                  for (PartitionMetadata part : item.partitionsMetadata()) {
                                         if (part.partitionId() == a_partition) {
                                                returnMetaData = part;
                                                break loop;
                                         }
                                  }
                           }

                     } catch (Exception e) {
                           System.out.println("Error communicating with Broker [" + seed
                                         + "] to find Leader for [" + a_topic + ", "
                                         + a_partition + "] Reason: " + e);
                     } finally {
                           if (consumer != null)
                                  consumer.close();
                     }
              }

              if (returnMetaData != null) {
                     m_replicaBrokers.clear();
                    
                     for (Broker replica : returnMetaData.replicas()) {
                           m_replicaBrokers.add(replica.host());
                     }
              }

              return returnMetaData;
       }

       public static long getLastOffset(SimpleConsumer consumer, String topic,
                     int partition, long whichTime, String clientName) {
              TopicAndPartition topicAndPartition = new TopicAndPartition(topic,
                           partition);
              Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
              requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(
                           whichTime, 1));
              OffsetRequest request = new OffsetRequest(requestInfo,
                           kafka.api.OffsetRequest.CurrentVersion(), clientName);

              OffsetResponse response = consumer.getOffsetsBefore(request);

              if (response.hasError()) {
                     System.out
                                  .println("Error fetching data Offset Data the Broker. Reason: "
                                                + response.errorCode(topic, partition));
                     return 0;
              }
              long[] offsets = response.offsets(topic, partition);
              return offsets[0];
       }

       private String findNewLeader(String a_oldLeader, String a_topic,
                     int a_partition, int a_port) throws Exception {
              for (int i = 0; i < 3; i++) {
                     boolean goToSleep = false;
                     PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port,
                                  a_topic, a_partition);
                     if (metadata == null) {
                           goToSleep = true;
                     } else if (metadata.leader() == null) {
                           goToSleep = true;
                     } else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host())
                                  && i == 0) {
                           // first time through if the leader hasn't changed give
                           // ZooKeeper a second to recover
                           // second time, assume the broker did recover before failover,
                           // or it was a non-Broker issue
                           //
                           goToSleep = true;
                     } else {
                           return metadata.leader().host();
                     }
                     if (goToSleep) {
                           try {
                                  Thread.sleep(1000);
                           } catch (InterruptedException ie) {
                           }
                     }
              }
              System.out
                           .println("Unable to find new leader after Broker failure. Exiting");
              throw new Exception(
                           "Unable to find new leader after Broker failure. Exiting");
       }
}


Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),&




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.datasource




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Caused by: java.lang.UnsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainIntegerDictionary

Exception -  Caused by: java.lang.UnsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainIntegerDictionary at org.apache.parquet.column.Dictionary.decodeToBinary(Dictionary.java:44) at org.apache.spark.sql.execution.vectorized.ColumnVector.getUTF8String(ColumnVector.java:645) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) Analysis - This might occur because of data type mismatch between Hive Table & written Parquet file. Solution - Correct the data type to match between Hive Table & Parquet