Skip to main content

Hive UDF Examples

There are 2 ways to write UDF's in Hive by extending:

  • org.apache.hadoop.hive.ql.exec.UDF
  • org.apache.hadoop.hive.ql.udf.generic.GenericUDF


First example below is simple one which can be used with hadoop primitive types.
Second example is bit complex as this can used with complex types arrays, maps etc. 


package hive;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class SimpleUDFExample extends UDF {

       public Text evaluate(Text input) {
              if(input ==null)
                     return null;
              return new Text("Hello "+input.toString());
       }

}

package hive;

import java.util.List;

import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ListObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector;
import org.apache.hadoop.io.Text;

public class ComplexUDFExample extends GenericUDF {

       ListObjectInspector listOI;
       StringObjectInspector elementOI;
      

       @Override
       public Object evaluate(DeferredObject[] arguments) throws HiveException {
              // get the list and string from the deferred objects using the object inspectors
           List<Text> list = (List<Text>) this.listOI.getList(arguments[0].get());
           String arg = elementOI.getPrimitiveJavaObject(arguments[1].get());
          
           // check for nulls
           if (list == null || arg == null) {
             return null;
           }
          
        // see if our list contains the value we need
           for(Text s: list) {
               if (arg.equals(s.toString())) return new Boolean(true);
             }
          
           return new Boolean(false);
       }

       @Override
       public String getDisplayString(String[] arg0) {
              return "arrayContainsExample()";
       }

       @Override
       public ObjectInspector initialize(ObjectInspector[] arguments)
                     throws UDFArgumentException {
              if (arguments.length != 2) {
                     throw new UDFArgumentLengthException(
                                  "arrayContainsExample only takes 2 arguments: List<T>, T");
              }

              ObjectInspector a = arguments[0];
              ObjectInspector b = arguments[1];

              if (!(a instanceof ListObjectInspector)
                           || !(b instanceof StringObjectInspector)) {
                     throw new UDFArgumentException(
                                  "first argument must be a list / array, second argument must be a string");
              }
             
              this.listOI = (ListObjectInspector) a;
           this.elementOI = (StringObjectInspector) b;
          
           if(!(listOI.getListElementObjectInspector() instanceof StringObjectInspector)){
              throw new UDFArgumentException("first argument must be a list of strings");
           }
          
           // the return type of our function is a boolean, so we provide the correct object inspector
           return PrimitiveObjectInspectorFactory.javaBooleanObjectInspector;
       }

}



Compile above code and register the jar file and use the UDF's as below:

hive> add jar
hive> /root/hadoop-examples.jar;
hive> create temporary function helloworld as 'hive.SimpleUDFExample';
hive> create temporary function containsString as 'hive.ComplexUDFExample';
hive> select helloworld(salary) from sample_07;
….
hive> select containsString(a.col1, a.col2) from ( select array("a", "b", "c") as col1 , "q" as col2  from sample_07 limit 1 ) a;
…..
…….




Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...