Skip to main content

Hive Complex Data Types


  • Array
$ vi arrayfile
1,abc,40000,a$b$c,hyd
2,def,3000,d$f,bang
3,abc,40000,a$b$c,hyd
4,def,3000,d$f,bang
5,abc,40000,a$b$c,hyd
6,def,3000,d$f,bang
7,abc,40000,a$b$c,hyd
8,def,3000,d$f,bang
9,abc,40000,a$b$c,hyd
10,def,3000,d$f$d$e$d$e$e$r$g,bang
hive> create table array_tab (id int, name string, salary bigint, sub array<string>, city string)
    > row format delimited
    > fields terminated by ','
    > collection items terminated by '$';
hive> load data local inpath '/root/arrayfile' into table array_tab;
hive> select * from array_tab;
OK
1       abc     40000   ["a","b","c"]   hyd
2       def     3000    ["d","f"]       bang
3       abc     40000   ["a","b","c"]   hyd
4       def     3000    ["d","f"]       bang
5       abc     40000   ["a","b","c"]   hyd
6       def     3000    ["d","f"]       bang
7       abc     40000   ["a","b","c"]   hyd
8       def     3000    ["d","f"]       bang
9       abc     40000   ["a","b","c"]   hyd
10      def     3000    ["d","f","d","e","d","e","e","r","g"]   bang
hive> describe array_tab;
OK
id                      int
name                    string
salary                  bigint
sub                     array<string>
city                    string
Time taken: 0.79 seconds, Fetched: 5 row(s)
hive> select sub[0] from array_tab where id=1;
….
OK
a



  • Map

$  vi mapfile
1,abc,40000,a$b$c,pf#500$epf#200,hyd
2,def,3000,d$f,pf#500,bang
2,abc,40000,a$b$c,pf#500$epf#200,hyd
3,def,3000,d$f,pf#500,bang
4,abc,40000,a$b$c,pf#500$epf#200,hyd
5,def,3000,d$f,pf#500,bang
6,abc,40000,a$b$c,pf#500$epf#200,hyd
7,def,3000,d$f,pf#500,bang
8,abc,40000,a$b$c,pf#500$epf#200,hyd
hive> create table arr_map_tab (id int, name string, salary bigint, sub array<string>, details map<string, int>, city string)
    > row format delimited
    > fields terminated by ','
    > collection items terminated by '$'
    > map keys terminated by '#';
hive> load data local inpath 'mapfile' into table arr_map_tab;
hive> select * from arr_map_tab;
OK
1       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
2       def     3000    ["d","f"]       {"pf":500}      bang
2       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
3       def     3000    ["d","f"]       {"pf":500}      bang
4       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
5       def     3000    ["d","f"]       {"pf":500}      bang
6       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
7       def     3000    ["d","f"]       {"pf":500}      bang
8       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    hyd
Time taken: 2.04 seconds, Fetched: 9 row(s)
hive> describe arr_map_tab;
OK
id                      int
name                    string
salary                  bigint
sub                     array<string>
details                 map<string,int>
city                    string
Time taken: 0.838 seconds, Fetched: 6 row(s)
hive> select details["pf"] from arr_map_tab limit 1;
OK
500
Time taken: 33.805 seconds, Fetched: 1 row(s)


  • Struct

$  vi structfile
1,abc,40000,a$b$c,pf#500$epf#200,hyd$ap$500001
2,def,3000,d$f,pf#500,bang$kar$600038
4,abc,40000,a$b$c,pf#500$epf#200,bhopal$MP$452013
5,def,3000,d$f,pf#500,Indore$MP$452014

hive> create table arr_map_struct_tab (id int, name string, salary bigint, sub array<string>, details map<string, int>, address struct<city:string, state:string, pin:int>)
> row format delimited                                                                                                                                                  
> fields terminated by ','
> collection items terminated by '$'                                                                                                         > map keys terminated by #';
OK
Time taken: 4.982 seconds
hive> describe arr_map_struct_tab;
OK
id                      int
name                    string
salary                  bigint
sub                     array<string>
details                 map<string,int>
address                 struct<city:string,state:string,pin:int>
Time taken: 1.416 seconds, Fetched: 6 row(s)
hive> load data local inpath 'structfile' into table arr_map_struct_tab;
hive> select * from arr_map_struct_tab;
OK
1       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    {"city":"hyd","state":"ap","pin":500001}
2       def     3000    ["d","f"]       {"pf":500}      {"city":"bang","state":"kar","pin":600038}
4       abc     40000   ["a","b","c"]   {"pf":500,"epf":200}    {"city":"bhopal","state":"MP","pin":452013}
5       def     3000    ["d","f"]       {"pf":500}      {"city":"Indore","state":"MP","pin":452014}
Time taken: 1.226 seconds, Fetched: 4 row(s)
hive> select address.city from arr_map_struct_tab where details["pf"]="500" and sub[0]="a";
OK
hyd
bhopal
Time taken: 20.286 seconds, Fetched: 2 row(s)



  • Uniontype
hive> CREATE TABLE union_tab(col1 UNIONTYPE<INT, DOUBLE, STRING, ARRAY<string>, STRUCT<a:INT,b:string>>)
    > row format delimited
    > fields terminated by ','
    > COLLECTION ITEMS TERMINATED BY '|'
    > LINES TERMINATED BY '\n';
OK
Time taken: 2.356 seconds
$ vi unionfile
0|1
0|12
1|1.234
1|2.3456
2|dinesh
2|Dinesh Sachdev
hive> load data local inpath 'unionfile' overwrite into table union_tab;
hive> select * from union_tab;
OK
{0:1}
{0:12}
{1:1.234}
{1:2.3456}
{2:"dinesh"}
{2:"Dinesh Sachdev"}
Time taken: 1.211 seconds, Fetched: 6 row(s)
It becomes quiet simple to load data into uniontype for primitives. But what about complex types? For example if we edit ‘unionfile’ and append an array:
$vi unionfile
0|1
0|12
1|1.234
1|2.3456
2|dinesh
2|Dinesh Sachdev
3|din|esh|sach|dev
hive> load data local inpath 'unionfile' overwrite into table union_tab;
hive> select * from union_tab;
OK
{0:1}
{0:12}
{1:1.234}
{1:2.3456}
{2:"dinesh"}
{2:"Dinesh Sachdev"}
{3:["din|esh|sach|dev"]}
Time taken: 1.11 seconds, Fetched: 7 row(s)

There is only a single element in array whereas we expected to have array of 4 strings [“din”,”esh”,”sach”,”dev”]

For this we can use create_union UDF:

hive> insert into table union_tab
    > select create_union(4,1, 1.02,"d", array("d","f"), named_struct('a',1, 'b','dinesh')) from sample_07 limit 1;
...
...
hive> insert into table union_tab
    > select create_union(3,1, 1.02,"d", array("d","f"), named_struct('a',1, 'b','dinesh')) from sample_07 limit 1;
hive> select * from union_tab;
OK
{4:{"a":1,"b":"dinesh"}}
{3:["d","f"]}
{0:1}
{0:12}
{1:1.234}
{1:2.3456}
{2:"dinesh"}
{2:"Dinesh Sachdev"}
{3:["din|esh|sach|dev"]}
Time taken: 0.064 seconds, Fetched: 9 row(s)


Comments

  1. boss, how can I query an union? suppose say I want to say "select from union_tab where "

    ReplyDelete

Post a Comment

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...