Skip to main content

Hive-Complex UDF-To replace keywords in csv string

Suppose we have an input file as follows :-

$vi source
abcd deff,12, xyzd,US
din,123,abcd,Pak


And a keyword's file like :-
$vi keyword
abc,xyz
xyz

And say we want to produce output something like where there are 4 columns:-
  1. first column, indicates original value.
  2. second column, indicates indexes of keywords removed in original value.
  3. third column, indicates string after keywords are removed.
  4. fourth column, indicates number of times keywords are removed in original value.

Firstly, let us create desired Tables in Hive as below:

Hive> create table source ( inital_data string ) ;
Hive> load data local inpath '/root/source' into table source;


Put Keyword file to HDFS:

$ hadoop fs -put /root/keyword hdfs://sandbox.hortonworks.com:8020/user/root/keyword

We would be writing a Hive UDF "ReplaceKeyword" that would write desired output mentioned above with "$" separator. So,let us create a table with "$" separator in Hive:

Hive> create table output ( initial_data string, fields_affected string, cleaned_data string, count_removed_keywords string ) row format delimited fields terminated by '$';

Once we have written UDF we would execute below SQL to generate desired output and write it to HDFS location of Hive table "output":

Hive> add jar /root/hadoop-examples.jar;
Hive> create temporary function rep_key as 'hive.ReplaceKeyword';
Hive> insert overwrite directory '/apps/hive/warehouse/output'
select rep_key(inital_data, "hdfs://sandbox.hortonworks.com:8020/user/root/keyword") from source;

Now, comes the important part to write UDF. Below pseudo-code details you the approach:

package hive;
import

public class ReplaceKeyword extends GenericUDF{
      
       StringObjectInspector [] elementOI = new StringObjectInspector[2];
       private static final char MY_TOKEN ='$';
      
       @Override
       public Object evaluate(DeferredObject[] arguments) throws HiveException {
              //Get the arguments
             //Type cast them and written null if argument is null

              //thisis to append output
              StringBuffer buffer = new StringBuffer();
             
              //to have sorted values of indexes replaced in args0
              List index = new TreeList();
              BufferedReader br = null;
             
              // to have count of replacement done
              long count = 0;
             
              try{
                     //Read file Keyword from file system
                     //Tokenize input value
                     // read keyword file line-by-line
                  while ((line = br.readLine()) != null) {
                    
                     // tokenize keywords on basis of comma
                    // Do your evaluation and replacement
                  }
                  return buffer.append(args0).append(MY_TOKEN).append(index).append(MY_TOKEN).
                  append(Arrays.toString(valueToks)).append(MY_TOKEN).
                  append(count).toString();
                 
              }catch(Exception e){
                     throw new HiveException(e);
              }
              finally{
                     // Do some action…
              }
             
       }

       @Override
       public String getDisplayString(String[] arg0) {
              return "ReplaceKeyword "+Arrays.toString(arg0);
       }

       @Override
       public ObjectInspector initialize(ObjectInspector[] arguments)
                     throws UDFArgumentException {
             
              //It will have only 2 arguments         
              //Write to cast input arguments to StringObjectInspector and do some pre-validation.
             
              // the return type of our function is a String, so we provide the correct object inspector
           return PrimitiveObjectInspectorFactory.javaStringObjectInspector;
       }

      
}


Finally, execute below queries to verify:

hive> dfs -ls /apps/hive/warehouse/output;
Found 1 items
-rw-r--r--   3 root hdfs         93 2015-11-24 18:04 /apps/hive/warehouse/output/000000_0

hive> select * from output;
OK
abcd deff,12, xyzd,US   [1, 3]  [d deff, 12, d, US]     2
din,123,abcd,Pak        [3]     [din, 123, d, Pak]      1
Time taken: 0.273 seconds, Fetched: 2 row(s)


Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...