Skip to main content

Installing single node Hadoop 2.x on Ubuntu

1) Prerequisite
  • Install open-ssh server
  • Install Sun java-7-oracle
2) Add Hadoop Group and User
$ sudo addgroup hadoop

$ sudo adduser --ingroup hadoop hduser

$ sudo adduser hduser sudo



3) Setup SSH Certificate

$ ssh-keygen -t rsa -P '' ... Your identification has been saved in /home/hduser/.ssh/id_rsa. Your public key has been saved in /home/hduser/.ssh/id_rsa.pub. ... $ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys $ ssh localhost

4) Disabling IPv6
$ sudo gedit /etc/sysctl.conf Add following lines to the end of file and reboot the machine #disable ipv6 net.ipv6.conf.all.disable_ipv6 = 1 net.ipv6.conf.default.disable_ipv6 = 1 net.ipv6.conf.lo.disable_ipv6 = 1

5) Install/ Setup Hadoop
  • Download the hadoop tar.gz file.
  • Follow below steps on shell
$ sudo tar vxzf hadoop-2.7.1.tar.gz -C /usr/local $ cd /usr/local $ sudo mv hadoop-2.7.1 hadoop $ sudo chown -R hduser:hadoop hadoop

6) Setup environment variable for hadoop
$cd ~
$vi .bashrc
paste following to the end of the file
### #Hadoop variables export JAVA_HOME=/usr/lib/jvm/jdk export HADOOP_INSTALL=/usr/local/hadoop export PATH=$PATH:$HADOOP_INSTALL/bin export PATH=$PATH:$HADOOP_INSTALL/sbin export PATH=$PATH:$JAVA_HOME/bin export HADOOP_MAPRED_HOME=$HADOOP_INSTALL export HADOOP_COMMON_HOME=$HADOOP_INSTALL export HADOOP_HDFS_HOME=$HADOOP_INSTALL export YARN_HOME=$HADOOP_INSTALL export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib" export YARN_OPTS="$YARN_OPTS -Djava.net.preferIPv4Stack=true" ###end

7) Login using hduser and verify hadoop version
$ hadoop version
Hadoop 2.7.1 Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r 15ecc87ccf4a0228f35af08fc56de536e6ce657a Compiled by jenkins on 2015-06-29T06:04Z Compiled with protoc 2.5.0 From source with checksum fc0a1a23fc1868e4d5ee7fa2b28a58a This command was run using /usr/local/hadoop/share/hadoop/common/hadoop-common-2.7.1.jar

8) Configure Hadoop
$ cd /usr/local/hadoop/etc/hadoop $ vi core-site.xml #Paste following between <configuration> <property> <name>fs.default.name</name> <value>hdfs://localhost:9000</value> </property> $ vi yarn-site.xml #Paste following between <configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> $ mv mapred-site.xml.template mapred-site.xml $ vi mapred-site.xml #Paste following between <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> $ cd ~ $ mkdir -p mydata/hdfs/namenode $ mkdir -p mydata/hdfs/datanode $ cd /usr/local/hadoop/etc/hadoop $ vi hdfs-site.xml Paste following between <configuration> tag <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>file:/home/hduser/mydata/hdfs/namenode</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>file:/home/hduser/mydata/hdfs/datanode</value> </property>

vi /usr/local/hadoop/etc/hadoop/hadoop-env.sh # Set Java home. The java implementation to use. export JAVA_HOME=/usr/lib/jvm/jdk

9) Format Namenode
$ hdfs namenode -format

10) Start Hadoop Service
$ start-dfs.sh
15/12/09 14:39:19 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [localhost]
localhost: starting namenode, logging to /usr/local/hadoop/logs/hadoop-hduser-namenode-ubuntu-VirtualBox.out
localhost: starting datanode, logging to /usr/local/hadoop/logs/hadoop-hduser-datanode-ubuntu-VirtualBox.out
Starting secondary namenodes [0.0.0.0]

0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop/logs/hadoop-hduser-secondarynamenode-ubuntu-VirtualBox.out

$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /usr/local/hadoop/logs/yarn-hduser-resourcemanager-ubuntu-VirtualBox.out

localhost: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-hduser-nodemanager-ubuntu-VirtualBox.out

$ mr-jobhistory-daemon.sh start historyserver
starting historyserver, logging to /usr/local/hadoop/logs/mapred-hduser-historyserver-ubuntu-VirtualBox.out

$ jps
2511 DataNode
2388 NameNode
3023 NodeManager
3346 JobHistoryServer
3413 Jps
2694 SecondaryNameNode
2894 ResourceManager

11) Run Hadoop Example
$ hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar pi 2 7
WARNING: Use "yarn jar" to launch YARN applications.
Number of Maps  = 2
Samples per Map = 7
15/12/09 14:42:57 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Starting Job
15/12/09 14:43:02 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032

15/12/09 14:43:04 INFO input.FileInputFormat: Total input paths to process : 2
15/12/09 14:43:04 INFO mapreduce.JobSubmitter: number of splits:2
15/12/09 14:43:05 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1449652253965_0001
15/12/09 14:43:07 INFO impl.YarnClientImpl: Submitted application application_1449652253965_0001
15/12/09 14:43:07 INFO mapreduce.Job: The url to track the job: http://ubuntu-VirtualBox:8088/proxy/application_1449652253965_0001/
15/12/09 14:43:07 INFO mapreduce.Job: Running job: job_1449652253965_0001
...
...
Job Finished in 57.921 seconds
Estimated value of Pi is 3.71428571428571428571

Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...