Skip to main content

Installing single node Hadoop 2.x on Ubuntu

1) Prerequisite
  • Install open-ssh server
  • Install Sun java-7-oracle
2) Add Hadoop Group and User
$ sudo addgroup hadoop

$ sudo adduser --ingroup hadoop hduser

$ sudo adduser hduser sudo



3) Setup SSH Certificate

$ ssh-keygen -t rsa -P '' ... Your identification has been saved in /home/hduser/.ssh/id_rsa. Your public key has been saved in /home/hduser/.ssh/id_rsa.pub. ... $ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys $ ssh localhost

4) Disabling IPv6
$ sudo gedit /etc/sysctl.conf Add following lines to the end of file and reboot the machine #disable ipv6 net.ipv6.conf.all.disable_ipv6 = 1 net.ipv6.conf.default.disable_ipv6 = 1 net.ipv6.conf.lo.disable_ipv6 = 1

5) Install/ Setup Hadoop
  • Download the hadoop tar.gz file.
  • Follow below steps on shell
$ sudo tar vxzf hadoop-2.7.1.tar.gz -C /usr/local $ cd /usr/local $ sudo mv hadoop-2.7.1 hadoop $ sudo chown -R hduser:hadoop hadoop

6) Setup environment variable for hadoop
$cd ~
$vi .bashrc
paste following to the end of the file
### #Hadoop variables export JAVA_HOME=/usr/lib/jvm/jdk export HADOOP_INSTALL=/usr/local/hadoop export PATH=$PATH:$HADOOP_INSTALL/bin export PATH=$PATH:$HADOOP_INSTALL/sbin export PATH=$PATH:$JAVA_HOME/bin export HADOOP_MAPRED_HOME=$HADOOP_INSTALL export HADOOP_COMMON_HOME=$HADOOP_INSTALL export HADOOP_HDFS_HOME=$HADOOP_INSTALL export YARN_HOME=$HADOOP_INSTALL export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib" export YARN_OPTS="$YARN_OPTS -Djava.net.preferIPv4Stack=true" ###end

7) Login using hduser and verify hadoop version
$ hadoop version
Hadoop 2.7.1 Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r 15ecc87ccf4a0228f35af08fc56de536e6ce657a Compiled by jenkins on 2015-06-29T06:04Z Compiled with protoc 2.5.0 From source with checksum fc0a1a23fc1868e4d5ee7fa2b28a58a This command was run using /usr/local/hadoop/share/hadoop/common/hadoop-common-2.7.1.jar

8) Configure Hadoop
$ cd /usr/local/hadoop/etc/hadoop $ vi core-site.xml #Paste following between <configuration> <property> <name>fs.default.name</name> <value>hdfs://localhost:9000</value> </property> $ vi yarn-site.xml #Paste following between <configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> $ mv mapred-site.xml.template mapred-site.xml $ vi mapred-site.xml #Paste following between <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> $ cd ~ $ mkdir -p mydata/hdfs/namenode $ mkdir -p mydata/hdfs/datanode $ cd /usr/local/hadoop/etc/hadoop $ vi hdfs-site.xml Paste following between <configuration> tag <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>file:/home/hduser/mydata/hdfs/namenode</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>file:/home/hduser/mydata/hdfs/datanode</value> </property>

vi /usr/local/hadoop/etc/hadoop/hadoop-env.sh # Set Java home. The java implementation to use. export JAVA_HOME=/usr/lib/jvm/jdk

9) Format Namenode
$ hdfs namenode -format

10) Start Hadoop Service
$ start-dfs.sh
15/12/09 14:39:19 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [localhost]
localhost: starting namenode, logging to /usr/local/hadoop/logs/hadoop-hduser-namenode-ubuntu-VirtualBox.out
localhost: starting datanode, logging to /usr/local/hadoop/logs/hadoop-hduser-datanode-ubuntu-VirtualBox.out
Starting secondary namenodes [0.0.0.0]

0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop/logs/hadoop-hduser-secondarynamenode-ubuntu-VirtualBox.out

$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /usr/local/hadoop/logs/yarn-hduser-resourcemanager-ubuntu-VirtualBox.out

localhost: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-hduser-nodemanager-ubuntu-VirtualBox.out

$ mr-jobhistory-daemon.sh start historyserver
starting historyserver, logging to /usr/local/hadoop/logs/mapred-hduser-historyserver-ubuntu-VirtualBox.out

$ jps
2511 DataNode
2388 NameNode
3023 NodeManager
3346 JobHistoryServer
3413 Jps
2694 SecondaryNameNode
2894 ResourceManager

11) Run Hadoop Example
$ hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar pi 2 7
WARNING: Use "yarn jar" to launch YARN applications.
Number of Maps  = 2
Samples per Map = 7
15/12/09 14:42:57 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Starting Job
15/12/09 14:43:02 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032

15/12/09 14:43:04 INFO input.FileInputFormat: Total input paths to process : 2
15/12/09 14:43:04 INFO mapreduce.JobSubmitter: number of splits:2
15/12/09 14:43:05 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1449652253965_0001
15/12/09 14:43:07 INFO impl.YarnClientImpl: Submitted application application_1449652253965_0001
15/12/09 14:43:07 INFO mapreduce.Job: The url to track the job: http://ubuntu-VirtualBox:8088/proxy/application_1449652253965_0001/
15/12/09 14:43:07 INFO mapreduce.Job: Running job: job_1449652253965_0001
...
...
Job Finished in 57.921 seconds
Estimated value of Pi is 3.71428571428571428571

Comments

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...