Skip to main content

Installing Hadoop 2.x cluster with multiple nodes

1) Follow steps as below
We are going to set up 3 node cluster for Hadoop to start with follow below steps as written in http://querydb.blogspot.in/2015/12/installing-single-node-hadoop-220-on.html
1) Prerequisite
2) Add Hadoop Group and User
3) Setup SSH Certificate
4) Disabling IPv6
5) Install/ Setup Hadoop
6) Setup environment variable for hadoop
7) Login using hduser and verify hadoop version

** Please make sure to complete the steps only till step 7)

2) Networking
Update /etc/hosts on each of 3 boxes and add below lines:
172.26.34.91    slave2
192.168.64.96   slave1
172.26.34.126   master

3) SSH access
Setup ssh in every node such that they can communicate with one another without any prompt for password. Since you have followed step 1) on every node. ssh keys has been setup. What we need to do is right now is to access slave1 and slave 2 from master. So, we just have to add the hduser@master’s public SSH key (which should be in $HOME/.ssh/id_rsa.pub) to the authorized_keys file of hduser@slave1 and hduser@slave2(in this user’s $HOME/.ssh/authorized_keys)

$ ssh-copy-id -i ~/.ssh/id_rsa.pub hduser@slave1
$ ssh-copy-id -i ~/.ssh/id_rsa.pub hduser@slave2
$ chmod 0600 ~/.ssh/authorized_keys

4) Configuration for master node

cd /usr/local/hadoop/etc/hadoop/
$ vi slaves
Add below entries...
master
slave1
slave2

$ vi hdfs-site.xml

<property>
 <name>dfs.replication</name>
 <value>2</value>
 <description>Default block replication.The actual number of replications can be specified when the file is created. The default is used if replication is not specified in create time.</description>
</property>

<property>
 <name>dfs.namenode.name.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/namenode</value>
 <description>Determines where on the local filesystem the DFS name node should store the name table(fsimage). If this is a comma-delimited list of directories then the name table is replicated in all of the directories, for redundancy.</description>
</property>

<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:60010</value>
 <description>The datanode server address and port for data transfer.</description>
</property>

<property>
 <name>dfs.namenode.secondary.http-address</name>
 <value>0.0.0.0:60090</value>
 <description>The secondary namenode http server address and port.</description>
</property>

<property>
 <name>dfs.namenode.secondary.https-address</name>
 <value>0.0.0.0:60091</value>
 <description>The secondary namenode https server address and port.</description>
</property>

<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:60075</value>
 <description>The datanode http server address and port.</description>
</property>


<property>
 <name>dfs.datanode.ipc.address</name>
 <value>0.0.0.0:60020</value>
 <description>The datanode ipc server address and port.</description>
</property>

<property>
 <name>dfs.namenode.http-address</name>
 <value>0.0.0.0:60070</value>
 <description>The address and the base port where the dfs namenode web ui will listen on.</description>
</property>


<property>
 <name>dfs.datanode.data.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/datanode</value>
 <description>Determines where on the local filesystem an DFS data node should store its blocks. If this is a comma-delimited list of directories, then data will be stored in all named directories, typically on different devices. Directories that do not exist are ignored.</description>
</property>

$vi core-site.xml

<property>
  <name>hadoop.tmp.dir</name>
  <value>/home/hduser/tmp</value>
  <description>Temporary Directory.</description>
</property>

<property>
  <name>fs.defaultFS</name>
  <value>hdfs://master:54310</value>
  <description>Use HDFS as file storage engine</description>
</property>

<property>
<name>hadoop.proxyuser.hduser.hosts</name>
    <value>*</value>
</property>

<property>
     <name>hadoop.proxyuser.hduser.groups</name>
     <value>*</value>
</property>

$ vi yarn-site.xml

<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>

<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>
 <name>yarn.nodemanager.localizer.address</name>
 <value>${yarn.nodemanager.hostname}:9040</value>
</property>

<property>
 <name>yarn.nodemanager.webapp.address</name>
 <value>${yarn.nodemanager.hostname}:9042</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>master:9030</value>
</property>

<property>
 <name>yarn.resourcemanager.address</name>
 <value>master:9032</value>
</property>

<property>
  <name>yarn.resourcemanager.webapp.address</name>
  <value>master:9088</value>
</property>

<property>
  <name>yarn.resourcemanager.resource-tracker.address</name>
  <value>master:9031</value>
</property>

<property>
  <name>yarn.resourcemanager.admin.address</name>
  <value>master:9033</value>
</property>

<property>
  <name>yarn.nodemanager.vmem-check-enabled</name>
  <value>false</value>
</property>

<property>
  <name>yarn.nodemanager.pmem-check-enabled</name>
  <value>false</value>
</property>


$ mapred-site.xml

<property>
 <name>mapreduce.jobtracker.address</name>
 <value>master:54311</value>
 <description>The host and port that the MapReduce job tracker runs at. If .local., then jobs are run in-process as a single map and reduce task.</description>
</property>

<property>
 <name>mapreduce.shuffle.port</name>
 <value>13564</value>
 <description>Default port that the ShuffleHandler will run on. ShuffleHandler is a service run at the NodeManager to facilitate transfers of intermediate Map outputs to requesting Reducers.</description>
</property>

<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 <description>The framework for running mapreduce jobs</description>
</property>

<property>
 <name>mapreduce.jobhistory.address</name>
 <value>0.0.0.0:10030</value>
 <description>MapReduce JobHistory Server IPC host:port</description>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.address</name>
 <value>0.0.0.0:18888</value>
 <description>MapReduce JobHistory Server Web UI host:port</description>
</property>

<!--property>
    <name>mapreduce.map.memory.mb</name>
    <value>4096</value>
</property>

<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>8192</value>
</property-->

<property>
    <name>mapreduce.map.java.opts</name>
    <value>-Xmx3072m</value>
</property>

<property>
    <name>mapreduce.reduce.java.opts</name>
    <value>-Xmx6144m</value>
</property>


<!--property>
    <name>mapred.child.java.opts</name>
    <value>-Xmx3072m</value>
</property>

<property>
    <name>io.sort.mb</name>
    <value>512</value>
</property-->

$ vi hadoop-env.sh
# The java implementation to use.
export JAVA_HOME=/usr/lib/jvm/jdk

5) Configuration for slave machines (slave1 and slave2)

$ vi mapred-site.xml
<property>
 <name>mapreduce.jobtracker.address</name>
 <value>master:54311</value>
 <description>The host and port that the MapReduce job tracker runs at. If .local., then jobs are run in-process as a single map and reduce task.</description>
</property>


<property>
 <name>mapreduce.shuffle.port</name>
 <value>13564</value>
 <description>Default port that the ShuffleHandler will run on. ShuffleHandler is a service run at the NodeManager to facilitate transfers of intermediate Map outputs to requesting Reducers.</description>
</property>


<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 <description>The framework for running mapreduce jobs</description>
</property>

<property>
 <name>mapreduce.jobhistory.address</name>
 <value>0.0.0.0:10030</value>
 <description>MapReduce JobHistory Server IPC host:port</description>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.address</name>
 <value>0.0.0.0:18888</value>
 <description>MapReduce JobHistory Server Web UI host:port</description>
</property>

<!--property>
    <name>mapreduce.map.memory.mb</name>
    <value>4096</value>
</property>

<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>8192</value>
</property-->

<property>
    <name>mapreduce.map.java.opts</name>
    <value>-Xmx3072m</value>
</property>

<property>
    <name>mapreduce.reduce.java.opts</name>
    <value>-Xmx6144m</value>
</property>

<!--property>
    <name>mapred.child.java.opts</name>
    <value> -Xmx1073741824</value>
</property>

<property>
    <name>io.sort.mb</name>
    <value>512</value>
</property-->

$ vi core-site.xml

<property>
  <name>hadoop.tmp.dir</name>
  <value>/home/hduser/tmp</value>
  <description>Temporary Directory.</description>
</property>

<property>
  <name>fs.defaultFS</name>
  <value>hdfs://master:54310</value>
  <description>Use HDFS as file storage engine</description>
</property>


<property>
<name>hadoop.proxyuser.hduser.hosts</name>
    <value>*</value>
</property>

<property>
     <name>hadoop.proxyuser.hduser.groups</name>
     <value>*</value>
</property>

$ vi yarn-site.xml

<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>

<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>
 <name>yarn.nodemanager.localizer.address</name>
 <value>${yarn.nodemanager.hostname}:9040</value>
</property>

<property>
 <name>yarn.nodemanager.webapp.address</name>
 <value>${yarn.nodemanager.hostname}:9042</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>master:9030</value>
</property>

<property>
 <name>yarn.resourcemanager.address</name>
 <value>master:9032</value>
</property>

<property>
  <name>yarn.resourcemanager.webapp.address</name>
  <value>master:9088</value>
</property>

<property>
  <name>yarn.resourcemanager.resource-tracker.address</name>
  <value>master:9031</value>
</property>

<property>
  <name>yarn.resourcemanager.admin.address</name>
  <value>master:9033</value>
</property>

<property>
  <name>yarn.nodemanager.vmem-check-enabled</name>
  <value>false</value>
</property>

<property>
  <name>yarn.nodemanager.pmem-check-enabled</name>
  <value>false</value>
</property>

$ vi hdfs-site.xml

<property>
 <name>dfs.replication</name>
 <value>2</value>
 <description>Default block replication.The actual number of replications can be specified when the file is created. The default is used if replication is not specified in create time.</description>
</property>

<property>
 <name>dfs.namenode.name.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/namenode</value>
 <description>Determines where on the local filesystem the DFS name node should store the name table(fsimage). If this is a comma-delimited list of directories then the name table is replicated in all of the directories, for redundancy.</description>
</property>

<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:60010</value>
 <description>The datanode server address and port for data transfer.</description>
</property>

<property>
 <name>dfs.namenode.secondary.http-address</name>
 <value>0.0.0.0:60090</value>
 <description>The secondary namenode http server address and port.</description>
</property>

<property>
 <name>dfs.namenode.secondary.https-address</name>
 <value>0.0.0.0:60091</value>
 <description>The secondary namenode https server address and port.</description>
</property>

<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:60075</value>
 <description>The datanode http server address and port.</description>
</property>


<property>
 <name>dfs.datanode.ipc.address</name>
 <value>0.0.0.0:60020</value>
 <description>The datanode ipc server address and port.</description>
</property>

<property>
 <name>dfs.namenode.http-address</name>
 <value>0.0.0.0:60070</value>
 <description>The address and the base port where the dfs namenode web ui will listen on.</description>
</property>


<property>
 <name>dfs.datanode.data.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/datanode</value>
 <description>Determines where on the local filesystem an DFS data node should store its blocks. If this is a comma-delimited list of directories, then data will be stored in all named directories, typically on different devices. Directories that do not exist are ignored.</description>
</property>

$ vi hadoop-env.sh
# The java implementation to use.
export JAVA_HOME=/usr/lib/jvm/jdk

6) Formatting the HDFS filesystem via the NameNode
Before we start our new multi-node cluster, we must format Hadoop’s distributed filesystem (HDFS) via the NameNode. You need to do this the first time you set up an Hadoop cluster.To format run

hduser@master:/usr/local/hadoop$ bin/hadoop namenode -format
...
...

7) Start hadoop services
hduser@master:~$ start-dfs.sh
hduser@master:~$ start-yarn.sh
hduser@master:~$ mr-jobhistory-daemon.sh start historyserver

8) Check master , slave1 and slave2 if all java processes are running or not. Also open http://master:9088/cluster/nodes to see if it shows 3 nodes.

Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...