Skip to main content

Installing Hadoop 2.x cluster with multiple nodes

1) Follow steps as below
We are going to set up 3 node cluster for Hadoop to start with follow below steps as written in http://querydb.blogspot.in/2015/12/installing-single-node-hadoop-220-on.html
1) Prerequisite
2) Add Hadoop Group and User
3) Setup SSH Certificate
4) Disabling IPv6
5) Install/ Setup Hadoop
6) Setup environment variable for hadoop
7) Login using hduser and verify hadoop version

** Please make sure to complete the steps only till step 7)

2) Networking
Update /etc/hosts on each of 3 boxes and add below lines:
172.26.34.91    slave2
192.168.64.96   slave1
172.26.34.126   master

3) SSH access
Setup ssh in every node such that they can communicate with one another without any prompt for password. Since you have followed step 1) on every node. ssh keys has been setup. What we need to do is right now is to access slave1 and slave 2 from master. So, we just have to add the hduser@master’s public SSH key (which should be in $HOME/.ssh/id_rsa.pub) to the authorized_keys file of hduser@slave1 and hduser@slave2(in this user’s $HOME/.ssh/authorized_keys)

$ ssh-copy-id -i ~/.ssh/id_rsa.pub hduser@slave1
$ ssh-copy-id -i ~/.ssh/id_rsa.pub hduser@slave2
$ chmod 0600 ~/.ssh/authorized_keys

4) Configuration for master node

cd /usr/local/hadoop/etc/hadoop/
$ vi slaves
Add below entries...
master
slave1
slave2

$ vi hdfs-site.xml

<property>
 <name>dfs.replication</name>
 <value>2</value>
 <description>Default block replication.The actual number of replications can be specified when the file is created. The default is used if replication is not specified in create time.</description>
</property>

<property>
 <name>dfs.namenode.name.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/namenode</value>
 <description>Determines where on the local filesystem the DFS name node should store the name table(fsimage). If this is a comma-delimited list of directories then the name table is replicated in all of the directories, for redundancy.</description>
</property>

<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:60010</value>
 <description>The datanode server address and port for data transfer.</description>
</property>

<property>
 <name>dfs.namenode.secondary.http-address</name>
 <value>0.0.0.0:60090</value>
 <description>The secondary namenode http server address and port.</description>
</property>

<property>
 <name>dfs.namenode.secondary.https-address</name>
 <value>0.0.0.0:60091</value>
 <description>The secondary namenode https server address and port.</description>
</property>

<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:60075</value>
 <description>The datanode http server address and port.</description>
</property>


<property>
 <name>dfs.datanode.ipc.address</name>
 <value>0.0.0.0:60020</value>
 <description>The datanode ipc server address and port.</description>
</property>

<property>
 <name>dfs.namenode.http-address</name>
 <value>0.0.0.0:60070</value>
 <description>The address and the base port where the dfs namenode web ui will listen on.</description>
</property>


<property>
 <name>dfs.datanode.data.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/datanode</value>
 <description>Determines where on the local filesystem an DFS data node should store its blocks. If this is a comma-delimited list of directories, then data will be stored in all named directories, typically on different devices. Directories that do not exist are ignored.</description>
</property>

$vi core-site.xml

<property>
  <name>hadoop.tmp.dir</name>
  <value>/home/hduser/tmp</value>
  <description>Temporary Directory.</description>
</property>

<property>
  <name>fs.defaultFS</name>
  <value>hdfs://master:54310</value>
  <description>Use HDFS as file storage engine</description>
</property>

<property>
<name>hadoop.proxyuser.hduser.hosts</name>
    <value>*</value>
</property>

<property>
     <name>hadoop.proxyuser.hduser.groups</name>
     <value>*</value>
</property>

$ vi yarn-site.xml

<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>

<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>
 <name>yarn.nodemanager.localizer.address</name>
 <value>${yarn.nodemanager.hostname}:9040</value>
</property>

<property>
 <name>yarn.nodemanager.webapp.address</name>
 <value>${yarn.nodemanager.hostname}:9042</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>master:9030</value>
</property>

<property>
 <name>yarn.resourcemanager.address</name>
 <value>master:9032</value>
</property>

<property>
  <name>yarn.resourcemanager.webapp.address</name>
  <value>master:9088</value>
</property>

<property>
  <name>yarn.resourcemanager.resource-tracker.address</name>
  <value>master:9031</value>
</property>

<property>
  <name>yarn.resourcemanager.admin.address</name>
  <value>master:9033</value>
</property>

<property>
  <name>yarn.nodemanager.vmem-check-enabled</name>
  <value>false</value>
</property>

<property>
  <name>yarn.nodemanager.pmem-check-enabled</name>
  <value>false</value>
</property>


$ mapred-site.xml

<property>
 <name>mapreduce.jobtracker.address</name>
 <value>master:54311</value>
 <description>The host and port that the MapReduce job tracker runs at. If .local., then jobs are run in-process as a single map and reduce task.</description>
</property>

<property>
 <name>mapreduce.shuffle.port</name>
 <value>13564</value>
 <description>Default port that the ShuffleHandler will run on. ShuffleHandler is a service run at the NodeManager to facilitate transfers of intermediate Map outputs to requesting Reducers.</description>
</property>

<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 <description>The framework for running mapreduce jobs</description>
</property>

<property>
 <name>mapreduce.jobhistory.address</name>
 <value>0.0.0.0:10030</value>
 <description>MapReduce JobHistory Server IPC host:port</description>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.address</name>
 <value>0.0.0.0:18888</value>
 <description>MapReduce JobHistory Server Web UI host:port</description>
</property>

<!--property>
    <name>mapreduce.map.memory.mb</name>
    <value>4096</value>
</property>

<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>8192</value>
</property-->

<property>
    <name>mapreduce.map.java.opts</name>
    <value>-Xmx3072m</value>
</property>

<property>
    <name>mapreduce.reduce.java.opts</name>
    <value>-Xmx6144m</value>
</property>


<!--property>
    <name>mapred.child.java.opts</name>
    <value>-Xmx3072m</value>
</property>

<property>
    <name>io.sort.mb</name>
    <value>512</value>
</property-->

$ vi hadoop-env.sh
# The java implementation to use.
export JAVA_HOME=/usr/lib/jvm/jdk

5) Configuration for slave machines (slave1 and slave2)

$ vi mapred-site.xml
<property>
 <name>mapreduce.jobtracker.address</name>
 <value>master:54311</value>
 <description>The host and port that the MapReduce job tracker runs at. If .local., then jobs are run in-process as a single map and reduce task.</description>
</property>


<property>
 <name>mapreduce.shuffle.port</name>
 <value>13564</value>
 <description>Default port that the ShuffleHandler will run on. ShuffleHandler is a service run at the NodeManager to facilitate transfers of intermediate Map outputs to requesting Reducers.</description>
</property>


<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 <description>The framework for running mapreduce jobs</description>
</property>

<property>
 <name>mapreduce.jobhistory.address</name>
 <value>0.0.0.0:10030</value>
 <description>MapReduce JobHistory Server IPC host:port</description>
</property>

<property>
 <name>mapreduce.jobhistory.webapp.address</name>
 <value>0.0.0.0:18888</value>
 <description>MapReduce JobHistory Server Web UI host:port</description>
</property>

<!--property>
    <name>mapreduce.map.memory.mb</name>
    <value>4096</value>
</property>

<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>8192</value>
</property-->

<property>
    <name>mapreduce.map.java.opts</name>
    <value>-Xmx3072m</value>
</property>

<property>
    <name>mapreduce.reduce.java.opts</name>
    <value>-Xmx6144m</value>
</property>

<!--property>
    <name>mapred.child.java.opts</name>
    <value> -Xmx1073741824</value>
</property>

<property>
    <name>io.sort.mb</name>
    <value>512</value>
</property-->

$ vi core-site.xml

<property>
  <name>hadoop.tmp.dir</name>
  <value>/home/hduser/tmp</value>
  <description>Temporary Directory.</description>
</property>

<property>
  <name>fs.defaultFS</name>
  <value>hdfs://master:54310</value>
  <description>Use HDFS as file storage engine</description>
</property>


<property>
<name>hadoop.proxyuser.hduser.hosts</name>
    <value>*</value>
</property>

<property>
     <name>hadoop.proxyuser.hduser.groups</name>
     <value>*</value>
</property>

$ vi yarn-site.xml

<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>

<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>
 <name>yarn.nodemanager.localizer.address</name>
 <value>${yarn.nodemanager.hostname}:9040</value>
</property>

<property>
 <name>yarn.nodemanager.webapp.address</name>
 <value>${yarn.nodemanager.hostname}:9042</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>master:9030</value>
</property>

<property>
 <name>yarn.resourcemanager.address</name>
 <value>master:9032</value>
</property>

<property>
  <name>yarn.resourcemanager.webapp.address</name>
  <value>master:9088</value>
</property>

<property>
  <name>yarn.resourcemanager.resource-tracker.address</name>
  <value>master:9031</value>
</property>

<property>
  <name>yarn.resourcemanager.admin.address</name>
  <value>master:9033</value>
</property>

<property>
  <name>yarn.nodemanager.vmem-check-enabled</name>
  <value>false</value>
</property>

<property>
  <name>yarn.nodemanager.pmem-check-enabled</name>
  <value>false</value>
</property>

$ vi hdfs-site.xml

<property>
 <name>dfs.replication</name>
 <value>2</value>
 <description>Default block replication.The actual number of replications can be specified when the file is created. The default is used if replication is not specified in create time.</description>
</property>

<property>
 <name>dfs.namenode.name.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/namenode</value>
 <description>Determines where on the local filesystem the DFS name node should store the name table(fsimage). If this is a comma-delimited list of directories then the name table is replicated in all of the directories, for redundancy.</description>
</property>

<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:60010</value>
 <description>The datanode server address and port for data transfer.</description>
</property>

<property>
 <name>dfs.namenode.secondary.http-address</name>
 <value>0.0.0.0:60090</value>
 <description>The secondary namenode http server address and port.</description>
</property>

<property>
 <name>dfs.namenode.secondary.https-address</name>
 <value>0.0.0.0:60091</value>
 <description>The secondary namenode https server address and port.</description>
</property>

<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:60075</value>
 <description>The datanode http server address and port.</description>
</property>


<property>
 <name>dfs.datanode.ipc.address</name>
 <value>0.0.0.0:60020</value>
 <description>The datanode ipc server address and port.</description>
</property>

<property>
 <name>dfs.namenode.http-address</name>
 <value>0.0.0.0:60070</value>
 <description>The address and the base port where the dfs namenode web ui will listen on.</description>
</property>


<property>
 <name>dfs.datanode.data.dir</name>
 <value>file:/home/hduser/hadoopdata/hdfs/datanode</value>
 <description>Determines where on the local filesystem an DFS data node should store its blocks. If this is a comma-delimited list of directories, then data will be stored in all named directories, typically on different devices. Directories that do not exist are ignored.</description>
</property>

$ vi hadoop-env.sh
# The java implementation to use.
export JAVA_HOME=/usr/lib/jvm/jdk

6) Formatting the HDFS filesystem via the NameNode
Before we start our new multi-node cluster, we must format Hadoop’s distributed filesystem (HDFS) via the NameNode. You need to do this the first time you set up an Hadoop cluster.To format run

hduser@master:/usr/local/hadoop$ bin/hadoop namenode -format
...
...

7) Start hadoop services
hduser@master:~$ start-dfs.sh
hduser@master:~$ start-yarn.sh
hduser@master:~$ mr-jobhistory-daemon.sh start historyserver

8) Check master , slave1 and slave2 if all java processes are running or not. Also open http://master:9088/cluster/nodes to see if it shows 3 nodes.

Comments

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...