Skip to main content

Hive Installation step- by-step with MySQL Metastore

1) Download hive "apache-hive-0.13.0-bin.tar.gz"

2) Gunzip and Untar at path /opt/ds/app/hive-0.13.0

3) Edit ~/.bashrc  and add below lines:-

#HIVE
export HIVE_HOME=/opt/ds/app/hive-0.13.0

export PATH=$PATH:$HIVE_HOME/bin


4) Change directory to /opt/ds/app/hive-0.13.0/conf

5) Create hive-log4j.properties from template

6) Create hive-env.sh from template. Also,set 

#
 if [ "$SERVICE" = "cli" ]; then
   if [ -z "$DEBUG" ]; then
     export HADOOP_OPTS="$HADOOP_OPTS -XX:NewRatio=12 -Xms10m -XX:MaxHeapFreeRatio=40 -XX:MinHeapFreeRatio=15 -XX:+UseParNewGC -XX:-UseGCOverheadLimit"
   else
     export HADOOP_OPTS="$HADOOP_OPTS -XX:NewRatio=12 -Xms10m -XX:MaxHeapFreeRatio=40 -XX:MinHeapFreeRatio=15 -XX:-UseGCOverheadLimit"
   fi
 fi

# The heap size of the jvm stared by hive shell script can be controlled via:
#
export HADOOP_HEAPSIZE="1024"

export HADOOP_CLIENT_OPTS="-Xmx${HADOOP_HEAPSIZE}m $HADOOP_CLIENT_OPTS"

# Set HADOOP_HOME to point to a specific hadoop install directory
HADOOP_HOME=/opt/ds/app/hadoop-2.2.0

# Hive Configuration Directory can be controlled by:
export HIVE_CONF_DIR=/opt/ds/app/hive-0.13.0/conf


7) Create directory on HDFS 
hadoop fs -mkdir /usr/hive/warehouse
hadoop fs -mkdir /temp
hadoop fs -chmod g+w /usr/hive/warehouse
hadoop fs -chmod g+w /temp

8)  On MySQL part do this

$ mysql -u root -p
Enter password:
mysql> CREATE DATABASE metastore;
mysql> USE metastore;

mysql> SOURCE /usr/lib/hive/scripts/metastore/upgrade/mysql/hive-schema-0.10.0.mysql.sql;

mysql> CREATE USER 'hive'@'metastorehost' IDENTIFIED BY 'mypassword';
...
mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'hive'@'metastorehost';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,LOCK TABLES,EXECUTE ON metastore.* TO 'hive'@'metastorehost';
.....
.......

mysql> CREATE USER 'hive'@'hivehost' IDENTIFIED BY 'mypassword';
...
mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'hive'@'hivehost';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,LOCK TABLES,EXECUTE ON metastore.* TO 'hive'@'hivehost';

mysql> FLUSH PRIVILEGES;

mysql> quit;

Note that create user for each host from where you are going to access the database.

9) Create hive-site.xml from template and add mysql configuration as follows:

<property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:mysql://myhost/metastore</value>
  <description>the URL of the MySQL database</description>
</property>

<property>
    <name>hive.metastore.warehouse.dir</name>
    <value>/usr/hive/warehouse</value>
    <description>location of default database for the warehouse</description>
 </property>

<property>
  <name>javax.jdo.option.ConnectionDriverName</name>
  <value>com.mysql.jdbc.Driver</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionUserName</name>
  <value>hive</value>
</property>

<property>
  <name>javax.jdo.option.ConnectionPassword</name>
  <value>mypassword</value>
</property>

<property>
  <name>datanucleus.autoCreateSchema</name>
  <value>false</value>
</property>

<property>
  <name>datanucleus.fixedDatastore</name>
  <value>true</value>
</property>

<property>
  <name>datanucleus.autoStartMechanism</name>
  <value>SchemaTable</value>
</property>

<property>
  <name>hive.metastore.uris</name>
  <value>thrift://<n.n.n.n>:9083</value>
  <description>IP address (or fully-qualified domain name) and port of the metastore host</description>

</property>


10) start hive service 
 hive --service metastore &

11)  execute command 
hive

12) execute below command to create table in Hive.
create table hivetesting(id string);

13) connect to mysql
mysql -h hive -p metastore

mysql> select * from TBLS;  // This command will show the hive tables.
your hivetesting table will be listed here.

Comments

  1. Hi,

    Thanks for sharing this information.

    Could you please make point no. 9. part of point no. 8.

    ReplyDelete

Post a Comment

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...