Skip to main content

Apache OOZIE installation step-by-step on Ubuntu


1) Download "oozie-4.1.0.tar.gz"

2) Gunzip and Untar @ /opt/ds/app/oozie

3) Change directory to  /opt/ds/app/oozie/oozie-4.1.0

4) Execute 
    bin/mkdistro.sh -DskipTests -Dhadoopversion=2.2.0

5) Change directory to /opt/ds/app/oozie/oozie-4.1.0/distro/target/oozie-4.1.0-distro/oozie-4.1.0

6) Edit '.bashrc' and add

export OOZIE_VERSION=4.1.0
export OOZIE_HOME=/opt/ds/app/oozie/oozie-4.1.0/distro/target/oozie-4.1.0-distro/oozie-4.1.0
export PATH=$PATH:$OOZIE_HOME/bin

7) Change directory to /opt/ds/app/oozie/oozie-4.1.0/distro/target/oozie-4.1.0-distro/oozie-4.1.0

8) Make directory 'libext'

9) Execute:
>cp /opt/ds/app/oozie/oozie-4.1.0/hcataloglibs/target/oozie-4.1.0-hcataloglibs.tar.gz .
>tar xzvf oozie-4.1.0-hcataloglibs.tar.gz
>cp oozie-4.1.0/hadooplibs/hadooplib-2.3.0.oozie-4.1.0/* libext/
>cd libext/

10) Download 'ext-2.2.zip'and place it in 'libext/' directory

11) Add below properties for your user in "core-site.xml".


   <property>
     <name>hadoop.proxyuser.USERNAME.hosts</name>
     <value>*</value>
   </property>

   <property>
     <name>hadoop.proxyuser.USERNAME.groups</name>
     <value>*</value>
   </property>

Note:- Replace USERNAME with your actual user. In my case name is "dsuser".


12) Now execute below command from shell:

oozie-setup.sh prepare-war
setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"

INFO: Adding extension: /usr/lib/oozie/oozie-bin/libext/activation-1.1.jar
.....................
..............................
New Oozie WAR file with added 'ExtJS library, JARs' at /opt/ds/app/oozie/oozie-4.1.0/distro/target/oozie-4.1.0-distro/oozie-4.1.0


INFO: Oozie is ready to be started.

13) Please note that in above step if "ExtJS library" is not added to war then web console will not get opened.

14) Next step is to prepare share lib

oozie-setup.sh sharelib create -fs hdfs://abcdHost:54310
  setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"
.....
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
the destination path for sharelib is: /user/dsuser/share/lib/lib_20150216191242

15) Next step is to update "ozzie-site.xml"

<property>
        <name>oozie.service.HadoopAccessorService.hadoop.configurations</name>
        <value>*=/opt/ds/app/hadoop-2.2.0/etc/hadoop</value>
        <description>
            Comma separated AUTHORITY=HADOOP_CONF_DIR, where AUTHORITY is the HOST:PORT of
            the Hadoop service (JobTracker, HDFS). The wildcard '*' configuration is
            used when there is no exact match for an authority. The HADOOP_CONF_DIR contains
            the relevant Hadoop *-site.xml files. If the path is relative is looked within
            the Oozie configuration directory; though the path can be absolute (i.e. to point
            to Hadoop client conf/ directories in the local filesystem.
        </description>
    </property>

    <property>
        <name>oozie.service.WorkflowAppService.system.libpath</name>
        <value>/user/${user.name}/share/lib</value>
        <description>
            System library path to use for workflow applications.
            This path is added to workflow application if their job properties sets
            the property 'oozie.use.system.libpath' to true.
        </description>
    </property>


16) Create oozie DB

oozie-setup.sh db create -run
  setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"

Validate DB Connection
DONE
Check DB schema does not exist
DONE
Check OOZIE_SYS table does not exist
DONE
Create SQL schema
DONE
Create OOZIE_SYS table
DONE

Oozie DB has been created for Oozie version '4.1.0'


The SQL commands have been written to: /tmp/ooziedb-8336919621541544603.sql

17) Start OOZIE

oozied.sh start

18) Verify oozie web console

oozie admin -oozie http://localhost:11000/oozie -status

Comments

Post a Comment

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...