Skip to main content

Apache OOZIE installation step-by-step on Ubuntu


1) Download "oozie-4.1.0.tar.gz"

2) Gunzip and Untar @ /opt/ds/app/oozie

3) Change directory to  /opt/ds/app/oozie/oozie-4.1.0

4) Execute 
    bin/mkdistro.sh -DskipTests -Dhadoopversion=2.2.0

5) Change directory to /opt/ds/app/oozie/oozie-4.1.0/distro/target/oozie-4.1.0-distro/oozie-4.1.0

6) Edit '.bashrc' and add

export OOZIE_VERSION=4.1.0
export OOZIE_HOME=/opt/ds/app/oozie/oozie-4.1.0/distro/target/oozie-4.1.0-distro/oozie-4.1.0
export PATH=$PATH:$OOZIE_HOME/bin

7) Change directory to /opt/ds/app/oozie/oozie-4.1.0/distro/target/oozie-4.1.0-distro/oozie-4.1.0

8) Make directory 'libext'

9) Execute:
>cp /opt/ds/app/oozie/oozie-4.1.0/hcataloglibs/target/oozie-4.1.0-hcataloglibs.tar.gz .
>tar xzvf oozie-4.1.0-hcataloglibs.tar.gz
>cp oozie-4.1.0/hadooplibs/hadooplib-2.3.0.oozie-4.1.0/* libext/
>cd libext/

10) Download 'ext-2.2.zip'and place it in 'libext/' directory

11) Add below properties for your user in "core-site.xml".


   <property>
     <name>hadoop.proxyuser.USERNAME.hosts</name>
     <value>*</value>
   </property>

   <property>
     <name>hadoop.proxyuser.USERNAME.groups</name>
     <value>*</value>
   </property>

Note:- Replace USERNAME with your actual user. In my case name is "dsuser".


12) Now execute below command from shell:

oozie-setup.sh prepare-war
setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"

INFO: Adding extension: /usr/lib/oozie/oozie-bin/libext/activation-1.1.jar
.....................
..............................
New Oozie WAR file with added 'ExtJS library, JARs' at /opt/ds/app/oozie/oozie-4.1.0/distro/target/oozie-4.1.0-distro/oozie-4.1.0


INFO: Oozie is ready to be started.

13) Please note that in above step if "ExtJS library" is not added to war then web console will not get opened.

14) Next step is to prepare share lib

oozie-setup.sh sharelib create -fs hdfs://abcdHost:54310
  setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"
.....
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
the destination path for sharelib is: /user/dsuser/share/lib/lib_20150216191242

15) Next step is to update "ozzie-site.xml"

<property>
        <name>oozie.service.HadoopAccessorService.hadoop.configurations</name>
        <value>*=/opt/ds/app/hadoop-2.2.0/etc/hadoop</value>
        <description>
            Comma separated AUTHORITY=HADOOP_CONF_DIR, where AUTHORITY is the HOST:PORT of
            the Hadoop service (JobTracker, HDFS). The wildcard '*' configuration is
            used when there is no exact match for an authority. The HADOOP_CONF_DIR contains
            the relevant Hadoop *-site.xml files. If the path is relative is looked within
            the Oozie configuration directory; though the path can be absolute (i.e. to point
            to Hadoop client conf/ directories in the local filesystem.
        </description>
    </property>

    <property>
        <name>oozie.service.WorkflowAppService.system.libpath</name>
        <value>/user/${user.name}/share/lib</value>
        <description>
            System library path to use for workflow applications.
            This path is added to workflow application if their job properties sets
            the property 'oozie.use.system.libpath' to true.
        </description>
    </property>


16) Create oozie DB

oozie-setup.sh db create -run
  setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"

Validate DB Connection
DONE
Check DB schema does not exist
DONE
Check OOZIE_SYS table does not exist
DONE
Create SQL schema
DONE
Create OOZIE_SYS table
DONE

Oozie DB has been created for Oozie version '4.1.0'


The SQL commands have been written to: /tmp/ooziedb-8336919621541544603.sql

17) Start OOZIE

oozied.sh start

18) Verify oozie web console

oozie admin -oozie http://localhost:11000/oozie -status

Comments

Post a Comment

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...