Skip to main content

Spring MongoDB Log Connection Pool Details - Active, Used, Waiting

 

We couldn't find any direct way to log Mongo Connection pool Size. So, we did implement an indirect way as below. 

This may be incorrect at times when dealing with Sharded MongoDB having Primaty & Secondary nodes. Because, connection may be used based on read prefrence - Primary, primaryPreferred, Secondary, etc.

But, this gives an understanding if connections are used efficiently and there is no wait to acquire connections from pool. This can be further enhanced to log correct connection pool statistics. 


1) Implement MyConnectionPoolListener  as below - 

import java.util.concurrent.atomic.AtomicInteger;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import com.mongodb.event.ConnectionCheckOutFailedEvent;

import com.mongodb.event.ConnectionCheckOutStartedEvent;

import com.mongodb.event.ConnectionCheckedInEvent;

import com.mongodb.event.ConnectionCheckedOutEvent;

import com.mongodb.event.ConnectionClosedEvent;

import com.mongodb.event.ConnectionCreatedEvent;

import com.mongodb.event.ConnectionPoolListener;


/**

 * Connection pool listener

 */

public class MyConnectionPoolListener implements ConnectionPoolListener {

private final AtomicInteger size = new AtomicInteger();

private final AtomicInteger checkedOutCount = new AtomicInteger();

private final AtomicInteger waitQueueSize = new AtomicInteger();

private Logger logger = LoggerFactory.getLogger(MyConnectionPoolListener.class);


/**

* Get Total number of Connections

* @return

*/

public int getSize() {

return size.get();

}


/**

* Get number of connections checkedOut or are in use

* @return

*/

public int getCheckedOutCount() {

return checkedOutCount.get();

}

/**

* Get Wait Queue Size

* @return

*/

public int getWaitQueueSize() {

return waitQueueSize.get();

}


@Override

public void connectionCheckedOut(final ConnectionCheckedOutEvent event) {

int v = checkedOutCount.incrementAndGet();

int p = waitQueueSize.decrementAndGet();

logger.debug("connectionCheckedOut ID [{}], Active Count [{}], Wait Queue Size [{}]", event.getConnectionId().getServerId(), v, p);

}


@Override

public void connectionCheckedIn(final ConnectionCheckedInEvent event) {

int v = checkedOutCount.decrementAndGet();

logger.debug("connectionCheckedIn ID [{}], Active Count [{}]", event.getConnectionId().getServerId(), v);

}


@Override

public void connectionCreated(final ConnectionCreatedEvent event) {

int v = size.incrementAndGet();

logger.debug("connectionCreated ID [{}], Total Size [{}]", event.getConnectionId().getServerId(), v);

}


@Override

public void connectionClosed(final ConnectionClosedEvent event) {

int v = size.decrementAndGet();

logger.debug("connectionClosed ID [{}], Total Size [{}]", event.getConnectionId().getServerId(), v);

}


@Override

public void connectionCheckOutFailed(ConnectionCheckOutFailedEvent event) {

int v  = waitQueueSize.decrementAndGet();

logger.debug("connectionCheckOutFailed ID [{}], Wait Queue Size [{}]", event.getServerId(), v);

}

@Override

public void connectionCheckOutStarted(ConnectionCheckOutStartedEvent event) {

int v =  waitQueueSize.incrementAndGet();

logger.debug("connectionCheckOutFailed ID [{}], Wait Queue Size [{}]", event.getServerId(), v);

}

}


2) Implement MongoConfig  as below - 

import static org.bson.codecs.configuration.CodecRegistries.fromProviders;

import static org.bson.codecs.configuration.CodecRegistries.fromRegistries;


import org.bson.codecs.configuration.CodecRegistry;

import org.bson.codecs.pojo.PojoCodecProvider;

import org.springframework.boot.autoconfigure.mongo.MongoClientSettingsBuilderCustomizer;

import org.springframework.context.annotation.Bean;

import org.springframework.stereotype.Component;


import com.mongodb.MongoClientSettings;


import io.micrometer.core.instrument.MeterRegistry;

import io.micrometer.core.instrument.binder.mongodb.MongoMetricsCommandListener;


@Component

public class MongoConfig {


private MyConnectionPoolListener myCpL = new MyConnectionPoolListener();


public final CodecRegistry pojoCodecRegistry = fromRegistries(MongoClientSettings.getDefaultCodecRegistry(),

fromProviders(PojoCodecProvider.builder().automatic(true).build()));


@Bean

public MongoClientSettingsBuilderCustomizer mongoClientSettingsBuilderCustomizer(MeterRegistry meterRegistry) {

return builder -> builder.addCommandListener(new MongoMetricsCommandListener(meterRegistry))

.applyToConnectionPoolSettings(block -> block.addConnectionPoolListener(myCpL));

}


public MyConnectionPoolListener getMyCpL() {

return myCpL;

}

}


3) Create PoolMonitor  as below - 

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.stereotype.Component;

@Component
@EnableScheduling
public class PoolMonitor {
public Logger logger = LoggerFactory.getLogger(PoolMonitor.class);
private final MongoConfig mongoConfig;
public PoolMonitor(MongoConfig mongoConfig) {
this.mongoConfig = mongoConfig;
}
@Scheduled(fixedDelay = 20000)
public void monitor() {
MyConnectionPoolListener myConnectionPoolListener = mongoConfig.getMyCpL();
logger.info("MongoDB Created Connection Pool Size [{}], Active Used Connection [{}], Wait Queue Size [{}]",
myConnectionPoolListener.getSize(), myConnectionPoolListener.getCheckedOutCount(), myConnectionPoolListener.getWaitQueueSize());
}
}


Pool Monitor will print status of MongoDB Connection Pool every 20 seconds. When someone uses MongoTemplate it will inturn take connections from pool but will increment or decrement Atomic Integer in Pool Listener. Thus, ensuring to print connection pool statistics. 




Comments

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...




Hive Count Query not working

Hive with Tez execution engine -  count(*) not working , returning 0 results.  Solution -  set hive.compute.query.using.stats=false Refer -  https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties hive.compute.query.using.stats Default Value:  false Added In: Hive 0.13.0 with  HIVE-5483 When set to true Hive will answer a few queries like min, max, and count(1) purely using statistics stored in the metastore. For basic statistics collection, set the configuration property  hive.stats.autogather   to true. For more advanced statistics collection, run ANALYZE TABLE queries.