Skip to main content

HBase Performance Optimization- Page2

 

Refer Page 1 of this article @https://querydb.blogspot.com/2023/10/hbase-performance-optimization.html


Normally, we run multiple workloads on the cluster. This includes Analytical as well as API calls. This also involves read & write traffic as well...

HBase provides the following mechanisms for managing the performance of a cluster handling multiple workloads: . Quotas . Request Queues . Multiple-Typed Queues

Quotas

HBASE-11598 introduces RPC quotas, which allow you to throttle requests based on the following limits

  • Limit overall network throughput and number of RPC requests
  • Limit amount of storage used for table or namespaces
  • Limit number of tables for each namespace or user
  • Limit number of regions for each namespace
For this to work - 
  • Set the hbase.quota.enabled property in the hbase-site.xml file to true.
  • Enter the command to set the set the limit of the quota, type of quota, and to which entity to apply the quota. The command and its syntax are: $hbase_shell> set_quota TYPE =>
        For example - set_quota TYPE => THROTTLE, THROTTLE_TYPE => READ, TABLE => 'N1:T1', LIMIT => '2req/sec'



Request Queues

HBASE-10993 introduces such a system for deprioritizing long-running scanners. There are two types of queues, fifo and deadline. To configure the type of queue used, configure the hbase.ipc.server.callqueue.type property in hbase-site.xml. There is no way to estimate how long each request may take, so de-prioritization only affects scans, and is based on the number of “next” calls a scan request has made. An assumption is made that when you are doing a full table scan, your job is not likely to be interactive, so if there are concurrent requests, you can delay long-running scans up to a limit tunable by setting the hbase.ipc.server.queue.max.call.delay property. The slope of the delay is calculated by a simple square root of (numNextCall * weight) where the weight is configurable by setting the hbase.ipc.server.scan.vtime.weight property.


Multiple-Typed Queues

Set following properties - 
  • hbase.ipc.server.callqueue.handler.factor
  • hbase.ipc.server.callqueue.read.ratio
  • hbase.ipc.server.callqueue.scan.ratio


Comments

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...




Hive Count Query not working

Hive with Tez execution engine -  count(*) not working , returning 0 results.  Solution -  set hive.compute.query.using.stats=false Refer -  https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties hive.compute.query.using.stats Default Value:  false Added In: Hive 0.13.0 with  HIVE-5483 When set to true Hive will answer a few queries like min, max, and count(1) purely using statistics stored in the metastore. For basic statistics collection, set the configuration property  hive.stats.autogather   to true. For more advanced statistics collection, run ANALYZE TABLE queries.