Skip to main content

Machine Learning Part 5

In this blog, we will describe another example that utilize KMeans & Spark to determine locations.

Before that, we would suggest you to got to previous blogs -

In this blog, we will analyze and try to make predictions on Fire detection GIS Data- https://fsapps.nwcg.gov/gisdata.php

  1. We will have historical data of Wild fires.
  2. And, we will try to analyze. That is eventually helpful to reduce response time in case of fire, reduce cost, reduce damages due to fire, etc.
Fire can grow exponentially based on various factors like - Wild life, Wind Velocity, terrain surface, etc. Incident tackle time is limited by various factors one of which is moving firefighting equipment. If we are plan in advance where to place equipment's such that it is close to a fire prone area. It is possible to reduce response time.

So, we can analyze the historical data and try to group them in a cluster, which has a centroid. This centroid can be helpful to determine location to make water tanks, keep fire equipment's, etc. As, this location will be close to the locations where fire has affected in past. 

K-Means is a clustering algorithm that fits suitable in this scenario and we will try to use the same.

Mostly, what we have seen a simplistic singular pipeline. But, we can have a pipeline implemented as per Rendezvous Architecture, where-in, multiple models can be applied to an request, and a user defined logic can be applied to return the best fit results to requester.  For example, We might want to locate a correct GPS address for some grocery store, or in case of Fire: we may require to alert a Fire site which can reach the location quickly, rather than the location which is close to Fire. So, an incoming request may be required to optimize with different models for different objectives. Like - Speed vs Accuracy.

We will discuss more about Rendezvous Architecture in future blogs.

This example is pretty much same as what we have seen in previous blog. But, Refer https://github.com/dinesh028/SparkDS/tree/master/src/indore/dinesh/sachdev/forestfire/

Next Blog - https://querydb.blogspot.com/2019/12/machine-learning-part-6.html

Comments

Popular posts

Spark MongoDB Connector Not leading to correct count or data while reading

  We are using Scala 2.11 , Spark 2.4 and Spark MongoDB Connector 2.4.4 Use Case 1 - We wanted to read a Shareded Mongo Collection and copy its data to another Mongo Collection. We noticed that after Spark Job successful completion. Output MongoDB did not had many records. Use Case 2 -  We read a MongoDB collection and doing count on dataframe lead to different count on each execution. Analysis,  We realized that MongoDB Spark Connector is missing data on bulk read as a dataframe. We tried various partitioner, listed on page -  https://www.mongodb.com/docs/spark-connector/v2.4/configuration/  But, none of them worked for us. Finally, we tried  MongoShardedPartitioner  this lead to constant count on each execution. But, it was greater than the actual count of records on the collection. This seems to be limitation with MongoDB Spark Connector. But,  MongoShardedPartitioner  seemed closest possible solution to this kind of situation. But, it per...




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...




MongoDB Chunk size many times bigger than configure chunksize (128 MB)

  Shard Shard_0 at Shard_0/xyz.com:27018 { data: '202.04GiB', docs: 117037098, chunks: 5, 'estimated data per chunk': '40.4GiB', 'estimated docs per chunk': 23407419 } --- Shard Shard_1 at Shard_1/abc.com:27018 { data: '201.86GiB', docs: 116913342, chunks: 4, 'estimated data per chunk': '50.46GiB', 'estimated docs per chunk': 29228335 } Per MongoDB-  Starting in 6.0.3, we balance by data size instead of the number of chunks. So the 128MB is now only the size of data we migrate at-a-time. So large data size per chunk is good now, as long as the data size per shard is even for the collection. refer -  https://www.mongodb.com/community/forums/t/chunk-size-many-times-bigger-than-configure-chunksize-128-mb/212616 https://www.mongodb.com/docs/v6.0/release-notes/6.0/#std-label-release-notes-6.0-balancing-policy-changes




AWS EMR Spark – Much Larger Executors are Created than Requested

  Starting EMR 5.32 and EMR 6.2 you can notice that Spark can launch much larger executors that you request in your job settings. For example - We started a Spark Job with  spark.executor.cores  =   4 But, one can see that the executors with 20 cores (instead of 4 as defined by spark.executor.cores) were launched. The reason for allocating larger executors is that there is a AWS specific Spark option spark.yarn.heterogeneousExecutors.enabled (exists in EMR only, does not exist in Open Source Spark) that is set to true by default that combines multiple executor creation requests on the same node into a larger executor container. So as the result you have fewer executor containers than you expected, each of them has more memory and cores that you specified. If you disable this option (--conf "spark.yarn.heterogeneousExecutors.enabled=false"), EMR will create containers with the specified spark.executor.memory and spark.executor.cores settings and will not co...




Hive Count Query not working

Hive with Tez execution engine -  count(*) not working , returning 0 results.  Solution -  set hive.compute.query.using.stats=false Refer -  https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties hive.compute.query.using.stats Default Value:  false Added In: Hive 0.13.0 with  HIVE-5483 When set to true Hive will answer a few queries like min, max, and count(1) purely using statistics stored in the metastore. For basic statistics collection, set the configuration property  hive.stats.autogather   to true. For more advanced statistics collection, run ANALYZE TABLE queries.