Skip to main content

Debugging KAFKA connectivity integration with Remote Application including Spring Boot, Spark, Console Consumer, Open SSL

 

Our downstream partners wanted to consume data from Kafka Topic. They did open network & firewall ports with respective zookeeper & broker servers.

But, Spring Boot application or Console Consumer failed to consume messages from Kafka topic. Refer log stack trace below - 

[2024-01-10 13:33:34,759] DEBUG [Consumer clientId=consumer-o2_prism_group-1, groupId=o2_prism_group] Node -1 disconnected. (org.apache.kafka.clients.NetworkClient)

[2024-01-10 13:33:34,762] WARN [Consumer clientId=consumer-o2_prism_group-1, groupId=o2_prism_group] Bootstrap broker ncxxx001.h.c.com:9093 (id: -1 rack: null) disconnected (org.apache.kafka.clients.NetworkClient)

[2024-01-10 13:33:34,860] DEBUG [Consumer clientId=consumer-o2_prism_group-1, groupId=o2_prism_group] Initialize connection to node ncxxx001.h.c.com:9093 (id: -1 rack: null) for sending metadata request (org.apache.kafka.clients.NetworkClient)

[2024-01-10 13:33:34,861] DEBUG [Consumer clientId=consumer-o2_prism_group-1, groupId=o2_prism_group] Initiating connection to node ncxxx001.h.c.com:9093 (id: -1 rack: null) using address ncxxx001.h.c.com/192.168.32.1 (org.apache.kafka.clients.NetworkClient)

Using SSLEngineImpl.


We have security.protocol=sasl_ssl . There are 2 parts to debugging process - 

First SASL ( Kerberos )

- Set following property to enable Kerberos debugging logs 

  • -Dsun.security.krb5.debug=true
- This property should help us debug - If KDC Server  is accessible & it is generating valid KRB5 ticket for the application.


Second SSL

- Set following property to enable SSL debugging logs 
  • -Djavax.net.debug=ssl
- SSL-Handshake (One Way) mainly consists of the following steps –
  1. *** ClientHello, TLSv1.2
  2. *** ServerHello, TLSv1.2
  3. *** Certificate chain
  4. *** ECDH ServerKeyExchange
  5. *** ServerHelloDone
  6. *** ECDHClientKeyExchange
  7. *** Finished  [Notifying client-side handshake finished]
  8. *** Finished  [Notifying server-side handshake finished]


We figured out that, We are not able to read Acknowledgment of Client Hello that came from server for step #1 above.

To further debug this, 
  • One can use tcpdump to listen to network. For example, below command will listen to tun0 ethernet connection and save data to file ti-dump.pcap - 
    •  sudo tcpdump -i tun0 -w ti-dump.pcap
  • Now, one can install Wireshark to analyze tcpdump file.


This can help debug where packets are being lost. Reference - https://youtu.be/QTHCNeyhPYM?si=V2eaWgcOS5ib1faa

Many a times packets may drop because of content filtering, which might not show up here exactly. 

Other reason for failure can be Server terminated TLS handshake because matching Cipher was not found. But, one should see that in tcpdump.

Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...