Skip to main content

Hive QL Spark SQL - Transform Rows into Columns

 

For a Structured Tabular Structure it is many a times required to transform Rows into Columns. This blog explains step by step process which can be executed as one SQL to achieve same. 

Lets try to understand with help of below example: where -in , we want to implement / transform input Table into table structure mentioned as output.


INPUT_TABLE 

topic
groupId
batchTimeMs
Partition 
offset 
Count 
t1 g001 1658173779 0123 122
t1g001 1658173779 12231100
t2g001 1658173779 01211

OUTPUT_TABLE 

rowkey:key

offset:0

count:0    

offset:1 

count:1 

t1:g001:1658173779 1231222231100

t2:g001:1658173779 

1211NULLNULL

 



FIRST STEP -

  • Concat Topic, GroupID, and BatchTimeMS to create RowKey 
  • Create Columns - offsets:0, counts:0, offsets:1, counts:1. Such that Columns has value only when respective partition value matches with column name.
  • SQL as below -

select concat_ws(':', topic,groupId,batchTimeMs) as rowkey,

case when partition='0' then offset else null end as `offsets:0`,

case when partition='0' then count else null end as `counts:0`,

case when partition='1' then offset else null end as `offsets:1`,

case when partition='1' then count else null end as `counts:1`

FROM INPUT_TABLE



rowkey

offset:0

count:0    

offset:1 

count:1 

t1:g001:1658173779 123122NULLNULL
t1:g001:1658173779NULLNULL2231100

t2:g001:1658173779 

1211NULLNULL




SECOND STEP-

  • Bring in all values of a ROWKEY in to one row. 
  • SQL as below -
select rowkey as `rowkey:key`,
collect_set(`offsets:0`)  as `offsets:0`,
collect_set(`counts:0`)  as `counts:0`,
collect_set(`offsets:1`)  as `offsets:1`,
collect_set(`counts:1`)  as `counts:1` FROM (
select concat_ws(':', topic,groupId,batchTimeMs) as rowkey,
case when partition='0' then offset else null end as `offsets:0`,
case when partition='0' then count else null end as `counts:0`,
case when partition='1' then offset else null end as `offsets:1`,
case when partition='1' then count else null end as `counts:1`
FROM INPUT_TABLE ) T1 group by rowkey

rowkey:key

offset:0

count:0    

offset:1 

count:1 

t1:g001:1658173779 [123, NULL][122, NULL][2231,NULL][100,NULL]

t2:g001:1658173779 

[12][11][NULL][NULL]



THIRD STEP - 
  • Select only first value from Array of values.
  • SQL as below resulting in final desired output - 
select rowkey as `rowkey:key`,
collect_set(`offsets:0`) [0] as `offsets:0`,
collect_set(`counts:0`) [0] as `counts:0`,
collect_set(`offsets:1`) [0] as `offsets:1`,
collect_set(`counts:1`) [0] as `counts:1` FROM (
select concat_ws(':', topic,groupId,batchTimeMs) as rowkey,
case when partition='0' then offset else null end as `offsets:0`,
case when partition='0' then count else null end as `counts:0`,
case when partition='1' then offset else null end as `offsets:1`,
case when partition='1' then count else null end as `counts:1`
FROM INPUT_TABLE ) T1 group by rowkey

rowkey:key

offset:0

count:0    

offset:1 

count:1 

t1:g001:1658173779 1231222231100

t2:g001:1658173779 

1211NULLNULL

Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...