Skip to main content

spark-sftp com.springml.spark.sftp org.apache.spark.sql.AnalysisException: Path does not exist:

 

We had been facing issue with using spark-sftp Jar while downloading a remote SFTP file and creating Dataframe.

Code being executed:

val df = spark.read.format("com.springml.spark.sftp")
.option("host", HOST)
.option("port", PORT)
.option("username", UN)
.option("password", PWD)
.option("fileType", "csv")
.option("inferSchema", "true")
.option("header", "true")
.load(FILENAME)

Error response:

org.apache.spark.sql.AnalysisException: Path does not exist: wasb://...

at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:612)

at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:595)

at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)

at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)

at scala.collection.immutable.List.foreach(List.scala:381)

at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)

at scala.collection.immutable.List.flatMap(List.scala:344)

at org.apache.spark.sql.execution.datasources.DataSource.org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary(DataSource.scala:595)

at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:390)

Analysis:

We found that SFTP is file downloading into local file location as specified by "yarn.nodemanager.local-dirs" when running in Cluster mode, whereas file is being downloaded in local as specified by "spark.local.dirwhen running in Client mode.


But, problem is that file is being searched over HDFS/ WASB instead of Local to create Dataframe which results in "Path not exists" exception

It is pointed out here that issue has been fixed in latest version of Jar file - https://github.com/springml/spark-sftp/issues/52. But, we were still getting same exception.


Solution:

We uploaded all the Jar files to HDFS / WASB and pointed same with --jars instead of local file system. Our code worked just fine after placing Jar files on HDFS and using same instead of local file system.

Command when using local file system resulting error -

spark-submit --jars /home/sshuser/ds/sftp.client-1.0.3.jar,/home/sshuser/ds/spark-sftp_2.11-1.1.5.jar,/home/sshuser/ds/spark-sql-kafka-0-10_2.11-2.3.0.jar


Command when using HDFS/ WASB, running successfully -

spark-submit --jars wasb:///home/sshuser/ds/sftp.client-1.0.3.jar,wasb:///home/sshuser/ds/spark-sftp_2.11-1.1.5.jar,wasb:///home/sshuser/ds/spark-sql-kafka-0-10_2.11-2.3.0.jar

Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...