Skip to main content

Load Balance or dynamic discovery of HiveServer2 Connection from Beeline or Hive Shell


To provide high availability or load balancing for HiveServer2, Hive provides a function called dynamic service discovery where multiple HiveServer2 instances can register themselves with Zookeeper. Instead of connecting to a specific HiveServer2 directly, clients connect to Zookeeper which returns a randomly selected registered HiveServer2 instance.


For example - 

Below command connects to Hive Server on MachineA

  • beeline -u "jdbc:hive2://machineA:10000"

Below command connects to Zookeeper Node: to determine one of the available Hive Server's to make a connection

  • beeline -u "jdbc:hive2://machineA:2181,machineB:2181,machineC:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2-mob-batch?tez.queue.name=myyarnqueue"

We can Create ZNode with Zookeeper as follows - 

  1. Open Zookeeper command line interface
    • zookeeper-client
  2. Connect to Zookeeper Server
    • connect machineA:2181,machineB:2181,machineC:2181
  3. Create ZNode
    • create /hiveserver2-mob-batch
  4. Manually, Register HS2 with Zookeeper under a namespace
    • create /hiveserver2-mob-batch/serverUri=machineA:10000;version=3.1.3000.7.1.2.0-96;sequence=0000000082
    • create /hiveserver2-mob-batch/serverUri=machineB:10000;version=3.1.3000.7.1.2.0-96;sequence=0000000081
    • create /hiveserver2-mob-batch/serverUri=machineC:10000;version=3.1.3000.7.1.2.0-96;sequence=0000000051
  5. Verify the Namespace by executing below
    • ls /hiveserver2-mob-batch
    • [serverUri=machineC:10000;version=3.1.3000.7.1.2.0-96;sequence=0000000051, serverUri=machineA:10000;version=3.1.3000.7.1.2.0-96;sequence=0000000082, serverUri=machineB:10000;version=3.1.3000.7.1.2.0-96;sequence=0000000081]

To deregister a particular HiveServer2, in the Zookeeper command line interface, run the following command
  • delete /hiveserver2-mob-batch/serverUri=machineC:10000;version=3.1.3000.7.1.2.0-96;sequence=0000000051
After you deregister the HiverServer2 from Zookeeper, it will not return the deregistered HiveServer2 for new client connections. However, any active client session is not affected by deregistering the HiveServer2 from Zookeeper.

To deregister all HiveServer2 instances of a particular version, run the following command from the command line:
  • hive --service hiveserver2 --deregister <version_number>

Now, Even after,  we do above manual configuration in Zookeeper. We might still get an error like below, when invoking beeline/ hive - 

22/04/11 19:43:31 [main-EventThread]: ERROR imps.EnsembleTracker: Invalid config event received: {server.1=machineA:3181:4181:participant, version=0, server.3=machineB:3181:4181:participant, server.2=machineC:3181:4181:participant}
Error: org.apache.hive.jdbc.ZooKeeperHiveClientException: Unable to read HiveServer2 configs from ZooKeeper (state=,code=0)

This is because following steps needs to ensured by Admin Team for zookeeper discovery for HS2

Configuration Requirements

1. Set hive.zookeeper.quorum to the ZooKeeper ensemble (a comma separated list of ZooKeeper server host:ports running at the cluster)

2. Customize hive.zookeeper.session.timeout so that it closes the connection between the HiveServer2’s client and ZooKeeper if a heartbeat is not received within the timeout period.

3. Set hive.server2.support.dynamic.service.discovery to true

4. Set hive.server2.zookeeper.namespace to the value that you want to use as the root namespace on ZooKeeper. The default value is hiveserver2.

5. The adminstrator should ensure that the ZooKeeper service is running on the cluster, and that each HiveServer2 instance gets a unique host:port combination to bind to upon startup. 



As a developer, we applied following hack to get random HiveServer2 from Zookeper. Thus, distributing load across HS2- 

beeline -u "jdbc:hive2://$( ( echo "connect machineA:2181,machineB:2181,machineC:2181"; echo "ls /hiveserver2-mob-batch") | zookeeper-client | grep -oP '(?<=serverUri=).*?(?=;)'| shuf | head -1)/default;principal=hive/_HOST@MYDOMAIN"

What above command is doing - 
  1. Open zookeeper-client
    1. connect machineA:2181,machineB:2181,machineC:2181
    2. ls /hiveserver2-mob-batch
  2. Parse HS2 URL's, as mentioned between - serverUri=  and ;
  3. Does Random shuffling of all URL's - shuf
  4. Pick up first random URL - head -1
  5. Concatenate string to form JDBC URL - jdbc:hive2:// ...


Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...