Skip to main content

org.apache.spark.SparkException: Kryo serialization failed: Buffer overflow

 

We were running an application which was leading to below error - 

Job aborted due to stage failure: Task 137 in stage 5.0 failed 4 times, most recent failure: Lost task 137.3 in stage 5.0 (TID 2090, ncABC.hadoop.com, executor 1): org.apache.spark.SparkException: Kryo serialization failed: Buffer overflow. Available: 0, required: 59606960. To avoid this, increase spark.kryoserializer.buffer.max value.
	at org.apache.spark.serializer.KryoSerializerInstance.serialize(KryoSerializer.scala:330)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:456)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
Caused by: com.esotericsoftware.kryo.KryoException: Buffer overflow. Available: 0, required: 59606960
	at com.esotericsoftware.kryo.io.Output.require(Output.java:167)
	at com.esotericsoftware.kryo.io.Output.writeBytes(Output.java:251)
	at com.esotericsoftware.kryo.io.Output.writeBytes(Output.java:237)
	at com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ByteArraySerializer.write(DefaultArraySerializers.java:49)
	at com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ByteArraySerializer.write(DefaultArraySerializers.java:38)
	at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:651)
	at com.twitter.chill.Tuple2Serializer.write(TupleSerializers.scala:37)
	at com.twitter.chill.Tuple2Serializer.write(TupleSerializers.scala:33)
	at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:651)


Solution - 

On further analysis, we found that this error was originating from BroadcastNestedLoopJoin

at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:165)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:162)
at org.apache.spark.sql.execution.SparkPlan.executeBroadcast(SparkPlan.scala:150)
at org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec.doExecute(BroadcastNestedLoopJoinExec.scala:343)


So, we removed BroadcastNestedLoopJoin by updating SQL where clause having NOT IN  to NOT EXISTS. Refer details here - http://querydb.blogspot.com/2021/06/spark-disable-broadcast-join-not.html


This solved our problem.


Alternative Solution - 

We read this solution at multiple places but we didn't try to set below properties - 

--conf  spark.kryoserializer.buffer.max=1024m  spark.kryoserializer.buffer=512m 

And, don't recommend to set it anything other than default values because,

There is a note that there will be one buffer per core on each worker. This buffer will grow up to spark.kryoserializer.buffer.max if needed. 


That said, if you have worker with 4 cores then 4*512m ~ 2GB is taken up for Kryo Buffer, and that seems a good chunk of memory. 


Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...