Skip to main content

Spark - Data Skew - Join Optimization

Sometimes data is unevenly distributed leading to data skew. What it means is a partition has more data due to same/ related keys compared to other partitions.

In case of Joins and Aggregations , all  data for same key should be co-located, may be processed by one container/ executor . This may be lead to slowness of application.

Solution -

  1. If data is small than smaller data set can be broadcasted. Thus, increasing join efficiency. This is governed by property - spark.sql.autoBroadcastJoinThreshold
  2. Identify if there are too many NULL values then filter them out before joining. And , process records with NULL keys separately then do a union with renaming data set.
  3.  Salting -
To understand salting, Lets understand problem with an example - 

Table 1 

Key
1
1
1

Table 2

Key
1
1

On joining Table1 with Table 2, 
  • Since this is same key all data should be shuffled to same container or one JVM, which will return 3*2 rows . like 
K1   K2
1 * 1
1 * 1
1 * 1
1 * 1 
1 * 1
1 * 1

Note - Above is problem with data skew. All tasks will be processed by one executor leading to slow performance. 

Say, now we randomize the keys for Table 1 & Table 2 such that data is evenly distributed. This is what Salting is.


Table 1 

Key Salt_key_T1
1       0
1       1
1       2

Table 2

Key Salt_key_T2
1      0
1      1
1      2
1      0
1      1
1      2

On joining Table1 with Table 2 on key + Salt_key - We still get 3*2 = 6 rows. But, previous keys are more randomized. 
Old Key was just "1"
New keys are "1 0" "1 1" "1 2". 

So, data can be processed by different executors (jvm's) leading to better data distribution and improved processing time.

K1   K2 SK_T1 SK_T2
1      1     0          0
1      1     0          0
1      1     1          1
1      1     1          1
1      1     2          2
1      1     2          2


How to do that ? For example - 

  1. Add following SQL column with Table 1 -   floor(rand(123) * 2) - This will assign random values between 0 to 2 to each row of Table 1
  2. Add following SQL column with Table 2 - explode(array(0,1,2)) - This will multiply each row in table2 with 3 values (0,1,2). So, we will have data duplicated as many times as number of distinct salt keys we added to Table1
  3. Note , above step will generate random numbers. Instead of that you can also use - monotonically_increasing_id() % 3
  4. In join expression use new salt key column as well apart from original join expression.

Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...