Skip to main content

Access AWS S3 or HCP HS3 (Hitachi) using Hadoop or HDFS or Distcp

Create Credentials File for S3 Keys


hadoop credential create fs.s3a.access.key -value <Access_KEY> -provider localjceks://file/$HOME/aws-dev-keys.jceks

hadoop credential create fs.s3a.secret.key -value <Secret_KEY> -provider localjceks://file/$HOME/aws-dev-keys.jceks

Where - 
<Access_KEY>- S3 access key
<Secret_KEY> - S3 secret key

Note - 
  1. this will create a file local file system, in home directory with name aws-dev-keys.jceks
  2. Put this file to HDFS. For, distributed access.
To list the details execute below command- 

hadoop credential list -provider localjceks://file/$HOME/aws-dev-keys.jceks

List files in S3 Bucket with hadoop Shell

hdfs dfs -Dhadoop.security.credential.provider.path=jceks://hdfs/myfilelocation/aws-dev-keys.jceks -ls s3a://s3bucketname/

hdfs dfs -Dfs.s3a.access.key=<Access_KEY> -Dfs.s3a.secret.key=<Secret_KEY> -ls s3a://aa-daas-ookla/

Note -
  1. Similarly, other hadoop/ hdfs commands like -put, -get can be executed.

Use distcp to copy data from S3 to HDFS - 

hadoop distcp -Dhadoop.security.credential.provider.path=jceks://myfilelocation/aws-dev-keys.jceks s3a://s3bucketname/mydir/tar.gz /hdfs/mydata/

Use distcp to copy data from HDFS to S3 - 

hadoop distcp -Dhadoop.security.credential.provider.path=jceks://myfilelocation/aws-dev-keys.jceks /hdfs/mydata/tar.gz s3a://s3bucketname/mydir/


Refer - https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.6.5/bk_cloud-data-access/content/s3-credential-providers.html

Note that by default it goes to AWS S3. But, say you have HCP S3 API or any other vendor S3 that you want to access then it can be done just by specifying one more property as below - 

-D fs.s3a.endpoint=hcp.s3-compatible.tests3api.com


The default provider password is "none".

To read value of an alias from provider file. Open Spark-Shell and execute below commands - 

val jceks_path="jceks://myfilelocation/aws-dev-keys.jceks"
val alias="fs.s3a.access.key"

val conf = spark.sparkContext.hadoopConfiguration
conf.set("hadoop.security.credential.provider.path", jceks_path)

val credential_raw = conf.getPassword(alias)
credential_raw.mkString

Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...