Skip to main content

Buzzwords - Deep learning, machine learning, artificial intelligence

Deep learning, machine learning, artificial intelligence – all buzzwords and representative
of the future of analytics.

Basic thing about all these buzzwords is to provoke a review of your own data to identify new opportunities. Like -

Retail Marketing Healthcare Telecommunication Finance
Demand Forecasting Recommendation
engines and targeting
Predicting patient
disease risk
Customer churn Risk analytics
Supply chain optimization Customer 360 Diagnostics
and alerts
System log analysis Customer 360
Pricing optimization Click-stream
analysis
Fraud Anomaly detection Fraud
Market segmentation and targeting Social media
analysis

Preventive
maintenance
Credit scoring
Recommendations Ad optimization
Smart meter
analysis







While writing this blog, I realized that I have worked upon highlighted use cases. But, it didn't involved all these buzzwords.

The basic philosophy behind these things is Knowing the Unkown. Once, you know the business use case you will program the implementations. Consider it like your business problem is to sort a data.

A programmer will be able to sort the data. But, knowing various algorithms like - quick sort, bubble sort, selection sort, insertion sort, heap sort or merge sort is all behind these buzzwords.

There are already API's available that have implemented all these algorithms.

In majority of use cases, a programmer/ data scientist might not be writing an algorithm. He/ She will just integrate the API and invoke its method. So, what is the buzz about ! The buzz is all about thinking that idea and implementing it, which can benefit the business.

For example -

  • You might hear from some data scientist, invoking a Python API to get the centroid of cluster and getting KMean statistics.
  • A SQL Programmer might use - Hive SQL to facilitate you to gather KMean statistics.
Important is knowing what is KMean,  where and how we can benefit from that.


There can be n routes to program something. But, knowing the best route which gives best performance and implementing that is learning or intelligence.

And, all these buzzwords are backed by innovative thinking and knowing your data. If you know your data and have an idea that can benefit the business. With 2020 tools & technologies, you can implement the Science to churn the Data that will benefit the business.

Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),&




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.datasource




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Caused by: java.lang.UnsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainIntegerDictionary

Exception -  Caused by: java.lang.UnsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainIntegerDictionary at org.apache.parquet.column.Dictionary.decodeToBinary(Dictionary.java:44) at org.apache.spark.sql.execution.vectorized.ColumnVector.getUTF8String(ColumnVector.java:645) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) Analysis - This might occur because of data type mismatch between Hive Table & written Parquet file. Solution - Correct the data type to match between Hive Table & Parquet