Skip to main content

Hive Analytics Functions - rank() vs dense_rank() vs percent_rank() vs row_umber() vs cume_dist()


RANK - Rank of each row within partition of result set.

DENSE_RANK - Mostly, similar to RANK. But, there will be no gaps in ranking.

PERCENT_RANK - Relative Rank of row within group of rows.

ROW_NUMBER - Sequential number of row within partition of a result set.

CUME_DIST - For row r, the number of rows with value lower than or equal to value of r , divided by number of rows evaluated in partition.


Practice -

hive> create table test (v string ) row format delimited fields terminated by ',';

hive> alter table test add columns (t string);

hive> load data local inpath '/root/test' overwrite into table test;

test data in local looks like below -

a,1
a,2
a,3
a,1
a,2
b,1
c,1
c,2
d,1
e,1

Execute below query and analyze the result -

hive> select v, t, rank() over (partition by v ), dense_rank() over (partition by v  ), row_number() over (partition by v  ), percent_rank()over (partition by v  ), cume_dist() over (partition by v  ) from test;

a       2       1       1       1       0.0     1.0
a       1       1       1       2       0.0     1.0
a       3       1       1       3       0.0     1.0
a       2       1       1       4       0.0     1.0
a       1       1       1       5       0.0     1.0
b       1       1       1       1       0.0     1.0
c       2       1       1       1       0.0     1.0
c       1       1       1       2       0.0     1.0
d       1       1       1       1       0.0     1.0
e       1       1       1       1       0.0     1.0

Note - Output of rank(), dense_rank() is same. Also, percent_rank() & cume_dist() results same output for each row in entire data set.


Above, example only clears us functioning of row_number() as each row within partition is given a sequential number. 

But, this example will also help us to understand that there is something wrong and we will hence forth proceed to correct results.

By the way, we can also execute analytics functions with empty  over clause. For example - 

hive> select v, t, rank() over ( ), dense_rank() over (  ), row_number() over ( ), percent_rank()over (), cume_dist() over (  ) from test;

e       1       1       1       1       0.0     1.0
d       1       1       1       2       0.0     1.0
c       2       1       1       3       0.0     1.0
c       1       1       1       4       0.0     1.0
b       1       1       1       5       0.0     1.0
a       2       1       1       6       0.0     1.0
a       1       1       1       7       0.0     1.0
a       3       1       1       8       0.0     1.0
a       2       1       1       9       0.0     1.0
a       1       1       1       10      0.0     1.0

What happened above is pretty explanatory. But, to hint you see row_number() column results.


Now, Lets execute below query - 
hive> select v, t, rank() over (partition by v order by t), dense_rank() over (partition by v  order by t), row_number() over (partition by v  order by t), percent_rank()over (partition by v  order by t), cume_dist() over (partition by v  order by t) from test;

a       1       1       1       1       0.0     0.4
a       1       1       1       2       0.0     0.4
a       2       3       2       3       0.5     0.8
a       2       3       2       4       0.5     0.8
a       3       5       3       5       1.0     1.0
b       1       1       1       1       0.0     1.0
c       1       1       1       1       0.0     0.5
c       2       2       2       2       1.0     1.0
d       1       1       1       1       0.0     1.0
e       1       1       1       1       0.0     1.0
  • In above results see that same rows are given same rank(). But rank = 2 is missing.
  • Whereas, in dense_rank() there is no missing sequential number.
  • Row_number() works fine for us.
  • percent_rank() actually gives us relative rank
  • cume_dist() finds distance of each row within result set.





Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...