Skip to main content

Design Patterns (aka DP), Creational - Abstract Factory Pattern

DP is a well-described solution to a common software problem. Its benefits:

  • Already defined to solve a problem.
  • Increase code reusability and robustness.
  • Faster devlopment and new developers in team can understand it easily
DP defined in to 3 categories:
  • Creational - Used to construct objects such that they can be decoupled from their implementing system.
  • Structural - Used to form large object structures between many disparate objects
  • Behavioral - Used to manage algorithms, relationships, and responsibilities between objects.
To understand this please read factory pattern.

When you go through factory pattern:
  • You see that factory can produce only Computers or aptly varied types of Computers. But only Computers.
  • Now, Say you have a 3rd variety of Computer just like PC or Server. Say, Laptop class. You can easily inherit Computer an create your Laptops.
  • So, once you have Laptop. Thus your factory start delivering it automatically? No, that would require a bit modification to have place for Laptops.
  • That means, Laptop's are not automatically plugged-in to existing factory. Existing factory requires modifications to do so.
  • Now, If you modify existing Factory it would require testing, if it is working correctly.
  • Now, say earlier both PC and Server were manufactured by same Factory. But now PC is produced by different Factory and Server is produced by different.
  • What then!! Do client need to go to different factories for purchasing Computers?
If you get above bullets. Now as a consumer, I do not want to go to different factories neither as a producer, I want to modify my existing Factory.

Scenario:-
  • You have an interface or abstract class or normal class. Computer class.
  • For now you have only 1 implementation of Computer. That is, PC class.
  • Now, you need Factory for PC. But as you have seen above problems, you want your Factory to be designed in such a way that it does not require modification for a new Computer.
  • So, you create an abstract interface. ComputerAbstractFactory class.
  • Now you create a PC Factory inheriting ComputerAbstractFactory class.
  • Now, as a client I do not want to go to PC Factory. I want to go to only single Factory that produces Computers.
  • So, we create a class ComputerFactory that provides you Computers of any types provided client needs to tell them specific factories for item they need.
Uptil now Client is happy as it does not need to go to various factories. It just need to ask ComputerFactory to get him what he needs.
Producer is also happy as now he knows PC factory will only produce PC nothing else.
  • There is another kind of Computer in market. That is Server class.
  • And there is another company that created Server Factory to manufacture Servers.
With Abstract factory we do not need to worry to modify any of existing Factories. Client will just ask ComputerFactory to get him Servers from Server Factory.

package com.test.command.dp.creational.abstarctFactory;

public abstract class Computer {

       public abstract String getRAM();

       public abstract String getHDD();

       public abstract String getCPU();

       @Override
       public String toString() {

              return "RAM= " + this.getRAM() + ", HDD=" + this.getHDD() + ", CPU="
                           + this.getCPU();
       }

}

package com.test.command.dp.creational.abstarctFactory;

public class PC extends Computer {

       private String ram;
       private String hdd;
       private String cpu;

       public PC(String ram, String hdd, String cpu) {
              this.ram = ram;
              this.hdd = hdd;
              this.cpu = cpu;
       }

       @Override
       public String getRAM() {
              // TODO Auto-generated method stub
              return this.ram;
       }

       @Override
       public String getHDD() {
              // TODO Auto-generated method stub
              return this.hdd;
       }

       @Override
       public String getCPU() {
              // TODO Auto-generated method stub
              return this.cpu;
       }

}

package com.test.command.dp.creational.abstarctFactory;

public interface ComputerAbstractFactory {

       public Computer createComputer();
}

package com.test.command.dp.creational.abstarctFactory;

public class PCFactory implements ComputerAbstractFactory {

       private String ram;
       private String hdd;
       private String cpu;

       public PCFactory(String ram, String hdd, String cpu) {
              this.ram = ram;
              this.hdd = hdd;
              this.cpu = cpu;
       }

       @Override
       public Computer createComputer() {
              // TODO Auto-generated method stub
              return new PC(ram,hdd,cpu);
       }

}

package com.test.command.dp.creational.abstarctFactory;

public class ComputerFactory {

       public static Computer getComputer(ComputerAbstractFactory factory){
              return factory.createComputer();
       }
}

package com.test.command.dp.creational.abstarctFactory;

public class Server extends Computer {

       private String ram;
       private String hdd;
       private String cpu;
      
      

       public Server(String ram, String hdd, String cpu) {
             
              this.ram = ram;
              this.hdd = hdd;
              this.cpu = cpu;
       }

       @Override
       public String getRAM() {
              // TODO Auto-generated method stub
              return this.ram;
       }

       @Override
       public String getHDD() {
              // TODO Auto-generated method stub
              return this.hdd;
       }

       @Override
       public String getCPU() {
              // TODO Auto-generated method stub
              return this.cpu;
       }

}



package com.test.command.dp.creational.abstarctFactory;

public class ServerFactory implements ComputerAbstractFactory {

       private String ram;
       private String hdd;
       private String cpu;

       public ServerFactory(String ram, String hdd, String cpu) {
              this.ram = ram;
              this.hdd = hdd;
              this.cpu = cpu;
       }

       @Override
       public Computer createComputer() {
             
              return new Server(ram,hdd,cpu);
       }
      
      
}

package com.test.command.dp.creational.abstarctFactory;

public class TestDesignPatterns {

       /**
        * @param args
        */
       public static void main(String[] args) {
              testAbstractFactory();

       }

       private static void testAbstractFactory() {
              Computer pc = ComputerFactory.getComputer(new PCFactory(null, null, null));
              Computer server = ComputerFactory.getComputer(new ServerFactory(null, null, "2"));
             
              System.out.println("Dinesh Sachdev your PC is ready:"+pc);
              System.out.println("Dinesh Sachdev your Server is ready server);    
             
       }

}


Comments

Popular posts

Hive Parse JSON with Array Columns and Explode it in to Multiple rows.

 Say we have a JSON String like below -  { "billingCountry":"US" "orderItems":[       {          "itemId":1,          "product":"D1"       },   {          "itemId":2,          "product":"D2"       }    ] } And, our aim is to get output parsed like below -  itemId product 1 D1 2 D2   First, We can parse JSON as follows to get JSON String get_json_object(value, '$.orderItems.itemId') as itemId get_json_object(value, '$.orderItems.product') as product Second, Above will result String value like "[1,2]". We want to convert it to Array as follows - split(regexp_extract(get_json_object(value, '$.orderItems.itemId'),'^\\["(.*)\\"]$',1),'","') as itemId split(regexp_extract(get_json_object(value, '$.orderItems.product'),'^\\["(.*)\\"]$',1),...




org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.;

  Caused by: org.apache.spark.sql.AnalysisException: Cannot overwrite a path that is also being read from.; at org.apache.spark.sql.execution.command.DDLUtils$.verifyNotReadPath(ddl.scala:906) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:192) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis$$anonfun$apply$1.applyOrElse(DataSourceStrategy.scala:134) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.execution.datasources.DataSourceAnalysis.apply(DataSourceStrategy.scala:134) at org.apache.spark.sql.execution.dataso...




Read from a hive table and write back to it using spark sql

In context to Spark 2.2 - if we read from an hive table and write to same, we get following exception- scala > dy . write . mode ( "overwrite" ). insertInto ( "incremental.test2" ) org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; org . apache . spark . sql . AnalysisException : Cannot insert overwrite into table that is also being read from .; 1. This error means that our process is reading from same table and writing to same table. 2. Normally, this should work as process writes to directory .hiveStaging... 3. This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions. 4. This error should not occur with insertInto method, as it overwrites partitions not the table. 5. A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto met...




Hadoop Distcp Error Duplicate files in input path

  One may face following error while copying data from one cluster to other, using Distcp  Command: hadoop distcp -i {src} {tgt} Error: org.apache.hadoop.toolsCopyListing$DulicateFileException: File would cause duplicates. Ideally there can't be same file names. So, what might be happening in your case is you trying to copy partitioned table from one cluster to other. And, 2 different named partitions have same file name. Your solution is to correct Source path  {src}  in your command, such that you provide path uptil partitioned sub directory, not the file. For ex - Refer below : /a/partcol=1/file1.txt /a/partcol=2/file1.txt If you use  {src}  as  "/a/*/*"  then you will get the error  "File would cause duplicates." But, if you use  {src}  as  "/a"  then you will not get error in copying.




Scala Spark building Jar leads java.lang.StackOverflowError

  Exception -  [Thread-3] ERROR scala_maven.ScalaCompileMojo - error: java.lang.StackOverflowError [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.TraversableForwarder$class.isEmpty(TraversableForwarder.scala:36) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.isEmpty(ListBuffer.scala:45) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.toList(ListBuffer.scala:306) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.ListBuffer.result(ListBuffer.scala:300) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:31) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.mutable.Stack$StackBuilder.result(Stack.scala:27) [Thread-3] INFO scala_maven.ScalaCompileMojo - at scala.collection.generic.GenericCompanion.apply(GenericCompanion.scala:50) [Thread-3] INFO scala_maven.ScalaCompile...